• Thumbnail for SL2(R)
    linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one: SL ( 2 , R ) = { ( a b c d ) : a , b , c , d ∈ R  and  a d − b c...
    21 KB (2,988 words) - 18:22, 23 July 2024
  • R). The Casimir element acts on any irreducible representation as multiplication by some complex scalar μ2. Thus in the case of the Lie algebra sl2,...
    14 KB (1,827 words) - 22:29, 27 March 2024
  • Thumbnail for General linear group
    contractible – see Kuiper's theorem. List of finite simple groups SL2(R) Representation theory of SL2(R) Representations of classical Lie groups Here rings are...
    23 KB (2,965 words) - 00:14, 1 September 2024
  • reductive Lie groups this has been solved; see representation theory of SL2(R) and representation theory of the Lorentz group for examples. Warner (1972)...
    7 KB (1,003 words) - 23:23, 20 November 2024
  • Thumbnail for Armand Borel
    ISBN 978-0-12-117740-9, MR 0882000 Borel, Armand (1997), Automorphic forms on SL2(R), Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press...
    14 KB (1,207 words) - 06:19, 16 December 2024
  • the expansions of Hauptmoduln. In other words, if Gg is the subgroup of SL2(R) which fixes Tg, then the quotient of the upper half of the complex plane...
    34 KB (4,523 words) - 15:44, 27 December 2024
  • 4064/fm-13-1-73-116. Laczkovich, Miklós (1999). "Paradoxical sets under SL2(R)". Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 42: 141–145. Satô, Kenzi...
    48 KB (6,849 words) - 21:49, 1 December 2024
  • \omega )} θ ∈ R / 2 π Z {\displaystyle \theta \in \mathbb {R} /2\pi \mathbb {Z} } (or θ ∈ R / π Z {\displaystyle \theta \in \mathbb {R} /\pi \mathbb {Z}...
    27 KB (4,595 words) - 00:13, 7 May 2024
  • Table of Lie groups for a list General linear group, special linear group SL2(R) SL2(C) Unitary group, special unitary group SU(2) SU(3) Orthogonal group,...
    4 KB (360 words) - 19:55, 10 January 2024
  • Thumbnail for Modular group
    Modular group (redirect from SL2(Z))
    sitting as lattices inside the (topological) universal covering group SL2(R) → PSL2(R). Further, the modular group has a trivial center, and thus the modular...
    25 KB (3,317 words) - 03:53, 16 December 2024