• rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix R = [...
    99 KB (15,031 words) - 06:23, 11 October 2024
  • Thumbnail for Matrix multiplication
    Johnson (2013). Matrix Analysis (2nd ed.). Cambridge University Press. p. 6. ISBN 978-0-521-54823-6. Peter Stingl (1996). Mathematik für Fachhochschulen...
    41 KB (6,581 words) - 08:08, 13 October 2024
  • In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express...
    36 KB (4,802 words) - 16:45, 22 May 2024
  • "Some properties of the Hessian matrix of a strictly convex function". Journal für die reine und angewandte Mathematik. 210: 67–72. doi:10.1515/crll.1962...
    50 KB (8,593 words) - 21:33, 24 October 2024
  • square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the...
    90 KB (14,257 words) - 20:47, 18 October 2024
  • details Sparse matrix–vector multiplication Volker Strassen (Aug 1969). "Gaussian elimination is not optimal". Numerische Mathematik. 13 (4): 354–356...
    34 KB (4,214 words) - 22:27, 1 November 2024
  • In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to...
    14 KB (2,058 words) - 11:59, 16 October 2024
  • Thumbnail for Singular value decomposition
    Mathematik. 14 (5): 403–420. doi:10.1007/BF02163027. MR 1553974. S2CID 123532178. Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis...
    88 KB (14,045 words) - 20:05, 9 November 2024
  • In linear algebra, a Hilbert matrix, introduced by Hilbert (1894), is a square matrix with entries being the unit fractions H i j = 1 i + j − 1 . {\displaystyle...
    7 KB (1,233 words) - 04:20, 12 September 2024
  • Thumbnail for Hadamard product (matrices)
    (2012). Matrix analysis. Cambridge University Press. Davis, Chandler (1962). "The norm of the Schur product operation". Numerische Mathematik. 4 (1):...
    21 KB (2,702 words) - 10:15, 22 August 2024