transformées de Fourier. Applications. Mathematical Society of Japan. Mandelbrojt, Szolem (1972) [1969]. Dirichlet series. Principles and methods [Séries de Dirichlet...
13 KB (1,238 words) - 19:55, 9 November 2023
this continuation observes that the series for the zeta function and the Dirichlet eta function satisfy the relation ( 1 − 2 2 s ) ζ ( s ) = η ( s ) = ∑...
126 KB (16,779 words) - 11:35, 13 November 2024
Linnik's theorem (category CS1 German-language sources (de))
Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem on arithmetic progressions. It asserts that there exist positive...
8 KB (845 words) - 17:56, 12 August 2023
Kolmogorov, "Une série de Fourier–Lebesgue divergente presque partout", Fundamenta Mathematicae 4 (1923), 324–328. Andrey Kolmogorov, "Une série de Fourier–Lebesgue...
22 KB (4,043 words) - 09:31, 28 August 2024
Ramanujan–Petersson conjecture (category CS1 German-language sources (de))
modular forms or automorphic forms. The Riemann zeta function and the Dirichlet L-function satisfy the Euler product, and due to their completely multiplicative...
20 KB (2,482 words) - 06:39, 28 September 2024
a mixed boundary value problem, the solution is required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint...
7 KB (747 words) - 00:29, 28 April 2024
(5): 279–281. doi:10.2307/3029800. JSTOR 3029800. Dirichlet PGL (1832). "Démonstration du théorème de Fermat pour le cas des 14e puissances". Journal für...
103 KB (11,486 words) - 23:14, 15 November 2024
also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory...
39 KB (5,239 words) - 06:01, 15 June 2024
(5): 279–281. doi:10.2307/3029800. JSTOR 3029800. Dirichlet PGL (1832). "Démonstration du théorème de Fermat pour le cas des 14e puissances". J. Reine...
54 KB (5,155 words) - 03:32, 23 April 2024
Polylogarithm (redirect from De Jonquière's function)
polylogarithm function is defined by a power series in z, which is also a Dirichlet series in s: Li s ( z ) = ∑ k = 1 ∞ z k k s = z + z 2 2 s + z 3 3 s...
60 KB (10,165 words) - 14:52, 17 June 2024