Hexanitroazobenzol – Wikipedia
Strukturformel | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | |||||||||||||||||||
Name | Hexanitroazobenzol | ||||||||||||||||||
Andere Namen |
| ||||||||||||||||||
Summenformel | C12H4N8O12 | ||||||||||||||||||
Kurzbeschreibung | orangerote Kristallnadeln[1] | ||||||||||||||||||
Externe Identifikatoren/Datenbanken | |||||||||||||||||||
| |||||||||||||||||||
Eigenschaften | |||||||||||||||||||
Molare Masse | 452,2 g·mol−1 | ||||||||||||||||||
Aggregatzustand | fest | ||||||||||||||||||
Dichte | |||||||||||||||||||
Schmelzpunkt | |||||||||||||||||||
Löslichkeit |
| ||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||
| |||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
Hexanitroazobenzol (HNAB) ist ein temperaturbeständiger Explosivstoff. Er besitzt eine höhere Sprengkraft als Hexanitrodiphenylamin (Hexyl).[1][5]
Gewinnung und Darstellung
[Bearbeiten | Quelltext bearbeiten]Die Herstellung von Hexanitroazobenzol wurde erstmals im Jahre 1906 beschrieben.[6] Die Synthese geht von einer Umsetzung von Trinitrochlorbenzol mit Hydrazin aus. Das resultierende 1,2-Bis(2,4,6-trinitrophenyl)hydrazin wird dann mittels rauchender Salpetersäure zur Zielverbindung oxidiert. Eine effizientere Synthese erfolgt durch die Umsetzung des kommerziell besser verfügbaren 2,4-Dinitrochlorbenzol mit Hydrazin im ersten Schritt. Das resultierende 1,2-Bis(2,4-dinitrophenyl)hydrazin wird dann durch Nitriersäure im zweiten Schritt gleichzeitig zur Zielverbindung oxidiert und vollständig nitriert.[7][1]
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Physikalische Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Hexanitroazobenzol bildet orangerote Kristalle.[1] Die Verbindung tritt in fünf polymorphen Kristallformen auf.[8] Die Kristallstruktur der Formen I, II und III ist monoklin. Allerdings unterscheiden sich die Raumgruppen mit P21/c für Form I, P21/a für Form II und P21 für Form III.[9][10] Die Formen I und III sind zwischen Raumtemperatur und 185 °C stabil, die Form II ist oberhalb von 185 °C bis zum Schmelzpunkt die stabile Kristallform. Die Formen IV und V wurden nur aus unterkühlten Schmelzen mittels Thermomikroskopie erhalten.[11] Eine DTA-Messung zeigt um 220 °C das endotherme Schmelzsignal und oberhalb von 300 °C eine stark exotherme Zersetzung.[3]
Explosionskenngrößen
[Bearbeiten | Quelltext bearbeiten]Die Verbindung kann durch Schlag, Reibung, Feuer und andere Zündquellen zur Explosion gebracht werden[5] und fällt im Umgang unter das Sprengstoffgesetz.[12]
Tabelle mit wichtigen explosionsrelevanten Eigenschaften: Sauerstoffbilanz −49,5 %[1] Stickstoffgehalt 24,78 %[1] Normalgasvolumen 888 l·kg−1[1] Explosionswärme 4342 kJ·kg−1 (H2O (l))
4288 kJ·kg−1 (H2O (g))[1]Spezifische Energie 1192 kJ·kg−1 (99,4 mt/kg)[1] Bleiblockausbauchung 37,0 cm3·g−1[2] Schlagempfindlichkeit 5 Nm[2] Reibempfindlichkeit >355 N[2] Detonationsgeschwindigkeit 7600 m·s−1[2]
Verwendung
[Bearbeiten | Quelltext bearbeiten]Es wird eine Verwendung in Boostern und zusammengesetzten Zündern empfohlen.[8]
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b c d e f g h i J. Köhler, R. Meyer, A. Homburg: Explosivstoffe. 10., vollständig überarbeitete Auflage. Wiley-VCH, Weinheim 2008, ISBN 978-3-527-32009-7, S. 159.
- ↑ a b c d e f g h E.-C. Koch: High Explosives, Propellants, Pyrotechnics. Walter de Gruyter. Berlin / Boston 2021, ISBN 978-3-11-066052-4, S. 385–386.
- ↑ a b c d B. M. Dobratz, P. C. Crawford: LLNL Explosives Handbook – Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory, University of California, Livermore, California, 94550, 31. Januar 1985, S. 19–57 bis 19–58 ia600901.us.archive.org (PDF; 19 MB).
- ↑ Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
- ↑ a b L. Roth, U. Weller-Schäferbarthold: Gefährliche Chemische Reaktionen - Potentiell gefährliche chemische Reaktionen zu über 1750 Stoffen. Eintrag für 2,2′,4,4′,6,6′-Hexanitroazobenzol, CD-ROM Ausgabe 12/2021, ecomed Sicherheit Landsberg/Lech, ISBN 978-3-609-48040-4.
- ↑ E. Grandmougin; H. Leeman: Ueber Hexanitro-azobenzol in Chem. Ber. 39 (1906) 4384–4385, doi:10.1002/cber.190603904147.
- ↑ J. P. Agrawal; R. D. Hodgson: Organic Chemistry of Explosives, John Wiley & Sons, Ltd. 2007, ISBN 978-0-470-02967-1, S. 160–162, 177.
- ↑ a b Thomas M. Klapötke: Energetic Materials Encyclopedia. de Gruyter, Berlin / Boston 2021, ISBN 978-3-11-062681-0, S. 782–786.
- ↑ E. J .Graeber, B. Morosin: The crystal structures of 2,2',4,4',6,6'-hexanitroazobenzene (HNAB), forms I and II. In: Acta Crystallographica. Section B: Structural Crystallography and Crystal Chemistry. B30, Nr. 2, 1974, S. 310–317, doi:10.1107/S0567740874002731.
- ↑ M. A. Rodriguez, C. F. Campana, A. D. Rae, E. Graeber, B. Morosin: Form III of 2,2′,4,4′,6,6′-hexanitroazobenzene (HNAB-III) In: Acta Crystallographica. Section C: Crystal Structure Communications. C61, Nr. 3, 2005, o127–o130, doi:10.1107/S0108270105000569.
- ↑ W. C. McCrone: Crystallographic Study of Hexanitroazobenzene (HNAB). Sandia National Laboratories, Alberquerque, USA, 1967.
- ↑ Sprengstoffgesetz, Anhang I, Liste der explosionsgefährlichen Stoffe (BGBl. 1975 I S. 853 PDF), auf die das Gesetz in vollem Umfang anzuwenden ist.