In continuum mechanics , an Arruda–Boyce model [ 1] is a hyperelastic constitutive model used to describe the mechanical behavior of rubber and other polymeric substances. This model is based on the statistical mechanics of a material with a cubic representative volume element containing eight chains along the diagonal directions. The material is assumed to be incompressible . The model is named after Ellen Arruda and Mary Cunningham Boyce , who published it in 1993.[ 1]
The strain energy density function for the incompressible Arruda–Boyce model is given by[ 2]
W = N k B θ n [ β λ chain − n ln ( sinh β β ) ] , {\displaystyle W=Nk_{B}\theta {\sqrt {n}}\left[\beta \lambda _{\text{chain}}-{\sqrt {n}}\ln \left({\cfrac {\sinh \beta }{\beta }}\right)\right],} where n {\displaystyle n} is the number of chain segments, k B {\displaystyle k_{B}} is the Boltzmann constant , θ {\displaystyle \theta } is the temperature in kelvins , N {\displaystyle N} is the number of chains in the network of a cross-linked polymer,
λ c h a i n = I 1 3 , β = L − 1 ( λ chain n ) , {\displaystyle \lambda _{\mathrm {chain} }={\sqrt {\tfrac {I_{1}}{3}}},\quad \beta ={\mathcal {L}}^{-1}\left({\cfrac {\lambda _{\text{chain}}}{\sqrt {n}}}\right),} where I 1 {\displaystyle I_{1}} is the first invariant of the left Cauchy–Green deformation tensor, and L − 1 ( x ) {\displaystyle {\mathcal {L}}^{-1}(x)} is the inverse Langevin function which can be approximated by
L − 1 ( x ) = { 1.31 tan ( 1.59 x ) + 0.91 x for | x | < 0.841 , 1 sgn ( x ) − x for 0.841 ≤ | x | < 1. {\displaystyle {\mathcal {L}}^{-1}(x)={\begin{cases}1.31\tan(1.59x)+0.91x&{\text{for}}\ |x|<0.841,\\{\tfrac {1}{\operatorname {sgn}(x)-x}}&{\text{for}}\ 0.841\leq |x|<1.\end{cases}}} For small deformations the Arruda–Boyce model reduces to the Gaussian network based neo-Hookean solid model. It can be shown[ 3] that the Gent model is a simple and accurate approximation of the Arruda–Boyce model.
Alternative expressions for the Arruda–Boyce model[ edit ] An alternative form of the Arruda–Boyce model, using the first five terms of the inverse Langevin function, is[ 4]
W = C 1 [ 1 2 ( I 1 − 3 ) + 1 20 N ( I 1 2 − 9 ) + 11 1050 N 2 ( I 1 3 − 27 ) + 19 7000 N 3 ( I 1 4 − 81 ) + 519 673750 N 4 ( I 1 5 − 243 ) ] {\displaystyle W=C_{1}\left[{\tfrac {1}{2}}(I_{1}-3)+{\tfrac {1}{20N}}(I_{1}^{2}-9)+{\tfrac {11}{1050N^{2}}}(I_{1}^{3}-27)+{\tfrac {19}{7000N^{3}}}(I_{1}^{4}-81)+{\tfrac {519}{673750N^{4}}}(I_{1}^{5}-243)\right]} where C 1 {\displaystyle C_{1}} is a material constant. The quantity N {\displaystyle N} can also be interpreted as a measure of the limiting network stretch.
If λ m {\displaystyle \lambda _{m}} is the stretch at which the polymer chain network becomes locked, we can express the Arruda–Boyce strain energy density as
W = C 1 [ 1 2 ( I 1 − 3 ) + 1 20 λ m 2 ( I 1 2 − 9 ) + 11 1050 λ m 4 ( I 1 3 − 27 ) + 19 7000 λ m 6 ( I 1 4 − 81 ) + 519 673750 λ m 8 ( I 1 5 − 243 ) ] {\displaystyle W=C_{1}\left[{\tfrac {1}{2}}(I_{1}-3)+{\tfrac {1}{20\lambda _{m}^{2}}}(I_{1}^{2}-9)+{\tfrac {11}{1050\lambda _{m}^{4}}}(I_{1}^{3}-27)+{\tfrac {19}{7000\lambda _{m}^{6}}}(I_{1}^{4}-81)+{\tfrac {519}{673750\lambda _{m}^{8}}}(I_{1}^{5}-243)\right]} We may alternatively express the Arruda–Boyce model in the form
W = C 1 ∑ i = 1 5 α i β i − 1 ( I 1 i − 3 i ) {\displaystyle W=C_{1}~\sum _{i=1}^{5}\alpha _{i}~\beta ^{i-1}~(I_{1}^{i}-3^{i})} where β := 1 N = 1 λ m 2 {\displaystyle \beta :={\tfrac {1}{N}}={\tfrac {1}{\lambda _{m}^{2}}}} and α 1 := 1 2 ; α 2 := 1 20 ; α 3 := 11 1050 ; α 4 := 19 7000 ; α 5 := 519 673750 . {\displaystyle \alpha _{1}:={\tfrac {1}{2}}~;~~\alpha _{2}:={\tfrac {1}{20}}~;~~\alpha _{3}:={\tfrac {11}{1050}}~;~~\alpha _{4}:={\tfrac {19}{7000}}~;~~\alpha _{5}:={\tfrac {519}{673750}}.}
If the rubber is compressible , a dependence on J = det ( F ) {\displaystyle J=\det({\boldsymbol {F}})} can be introduced into the strain energy density; F {\displaystyle {\boldsymbol {F}}} being the deformation gradient . Several possibilities exist, among which the Kaliske–Rothert[ 5] extension has been found to be reasonably accurate. With that extension, the Arruda-Boyce strain energy density function can be expressed as
W = D 1 ( J 2 − 1 2 − ln J ) + C 1 ∑ i = 1 5 α i β i − 1 ( I ¯ 1 i − 3 i ) {\displaystyle W=D_{1}\left({\tfrac {J^{2}-1}{2}}-\ln J\right)+C_{1}~\sum _{i=1}^{5}\alpha _{i}~\beta ^{i-1}~({\overline {I}}_{1}^{i}-3^{i})} where D 1 {\displaystyle D_{1}} is a material constant and I ¯ 1 = I 1 J − 2 / 3 {\displaystyle {\overline {I}}_{1}={I}_{1}J^{-2/3}} . For consistency with linear elasticity , we must have D 1 = κ 2 {\displaystyle D_{1}={\tfrac {\kappa }{2}}} where κ {\displaystyle \kappa } is the bulk modulus .
Consistency condition [ edit ] For the incompressible Arruda–Boyce model to be consistent with linear elasticity, with μ {\displaystyle \mu } as the shear modulus of the material, the following condition has to be satisfied:
∂ W ∂ I 1 | I 1 = 3 = μ 2 . {\displaystyle {\cfrac {\partial W}{\partial I_{1}}}{\biggr |}_{I_{1}=3}={\frac {\mu }{2}}\,.} From the Arruda–Boyce strain energy density function, we have,
∂ W ∂ I 1 = C 1 ∑ i = 1 5 i α i β i − 1 I 1 i − 1 . {\displaystyle {\cfrac {\partial W}{\partial I_{1}}}=C_{1}~\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\,.} Therefore, at I 1 = 3 {\displaystyle I_{1}=3} ,
μ = 2 C 1 ∑ i = 1 5 i α i β i − 1 I 1 i − 1 . {\displaystyle \mu =2C_{1}~\sum _{i=1}^{5}i\,\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\,.} Substituting in the values of α i {\displaystyle \alpha _{i}} leads to the consistency condition
μ = C 1 ( 1 + 3 5 λ m 2 + 99 175 λ m 4 + 513 875 λ m 6 + 42039 67375 λ m 8 ) . {\displaystyle \mu =C_{1}\left(1+{\tfrac {3}{5\lambda _{m}^{2}}}+{\tfrac {99}{175\lambda _{m}^{4}}}+{\tfrac {513}{875\lambda _{m}^{6}}}+{\tfrac {42039}{67375\lambda _{m}^{8}}}\right)\,.} The Cauchy stress for the incompressible Arruda–Boyce model is given by
σ = − p 1 + 2 ∂ W ∂ I 1 B = − p 1 + 2 C 1 [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+2~{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}=-p~{\boldsymbol {\mathit {1}}}+2C_{1}~\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]{\boldsymbol {B}}} Stress-strain curves under uniaxial extension for Arruda–Boyce model compared with various hyperelastic material models. For uniaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} -direction, the principal stretches are λ 1 = λ , λ 2 = λ 3 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{2}=\lambda _{3}} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 2 = λ 3 2 = 1 / λ {\displaystyle \lambda _{2}^{2}=\lambda _{3}^{2}=1/\lambda } . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 2 λ . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {2}{\lambda }}~.} The left Cauchy–Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + 1 λ ( n 2 ⊗ n 2 + n 3 ⊗ n 3 ) . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda }}~(\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3})~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = − p + 2 C 1 λ 2 [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] σ 22 = − p + 2 C 1 λ [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] = σ 33 . {\displaystyle {\begin{aligned}\sigma _{11}&=-p+2C_{1}\lambda ^{2}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]\\\sigma _{22}&=-p+{\cfrac {2C_{1}}{\lambda }}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=\sigma _{33}~.\end{aligned}}} If σ 22 = σ 33 = 0 {\displaystyle \sigma _{22}=\sigma _{33}=0} , we have
p = 2 C 1 λ [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] . {\displaystyle p={\cfrac {2C_{1}}{\lambda }}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.} Therefore,
σ 11 = 2 C 1 ( λ 2 − 1 λ ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] . {\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 / λ = 2 C 1 ( λ − 1 λ 2 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] . {\displaystyle T_{11}=\sigma _{11}/\lambda =2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.} Equibiaxial extension [ edit ] For equibiaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} and n 2 {\displaystyle \mathbf {n} _{2}} directions, the principal stretches are λ 1 = λ 2 = λ {\displaystyle \lambda _{1}=\lambda _{2}=\lambda \,} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 3 = 1 / λ 2 {\displaystyle \lambda _{3}=1/\lambda ^{2}\,} . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = 2 λ 2 + 1 λ 4 . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=2~\lambda ^{2}+{\cfrac {1}{\lambda ^{4}}}~.} The left Cauchy–Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + λ 2 n 2 ⊗ n 2 + 1 λ 4 n 3 ⊗ n 3 . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda ^{2}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {1}{\lambda ^{4}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = 2 C 1 ( λ 2 − 1 λ 4 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] = σ 22 . {\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=\sigma _{22}~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 λ = 2 C 1 ( λ − 1 λ 5 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] = T 22 . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{5}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=T_{22}~.} Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the n 1 {\displaystyle \mathbf {n} _{1}} directions with the n 3 {\displaystyle \mathbf {n} _{3}} direction constrained, the principal stretches are λ 1 = λ , λ 3 = 1 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{3}=1} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 = 1 / λ {\displaystyle \lambda _{2}=1/\lambda \,} . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 1 λ 2 + 1 . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~.} The left Cauchy–Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + 1 λ 2 n 2 ⊗ n 2 + n 3 ⊗ n 3 . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda ^{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = 2 C 1 ( λ 2 − 1 λ 2 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] ; σ 22 = 0 ; σ 33 = 2 C 1 ( 1 − 1 λ 2 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] . {\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~;~~\sigma _{22}=0~;~~\sigma _{33}=2C_{1}\left(1-{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 λ = 2 C 1 ( λ − 1 λ 3 ) [ ∑ i = 1 5 i α i β i − 1 I 1 i − 1 ] . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{3}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.} The deformation gradient for a simple shear deformation has the form[ 6]
F = 1 + γ e 1 ⊗ e 2 {\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}} where e 1 , e 2 {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}} are reference orthonormal basis vectors in the plane of deformation and the shear deformation is given by
γ = λ − 1 λ ; λ 1 = λ ; λ 2 = 1 λ ; λ 3 = 1 {\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1} In matrix form, the deformation gradient and the left Cauchy–Green deformation tensor may then be expressed as
F = [ 1 γ 0 0 1 0 0 0 1 ] ; B = F ⋅ F T = [ 1 + γ 2 γ 0 γ 1 0 0 0 1 ] {\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}} Therefore,
I 1 = t r ( B ) = 3 + γ 2 {\displaystyle I_{1}=\mathrm {tr} ({\boldsymbol {B}})=3+\gamma ^{2}} and the Cauchy stress is given by
σ = − p 1 + 2 C 1 [ ∑ i = 1 5 i α i β i − 1 ( 3 + γ 2 ) i − 1 ] B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+2C_{1}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~(3+\gamma ^{2})^{i-1}\right]~{\boldsymbol {B}}} The Arruda–Boyce model is based on the statistical mechanics of polymer chains. In this approach, each macromolecule is described as a chain of N {\displaystyle N} segments, each of length l {\displaystyle l} . If we assume that the initial configuration of a chain can be described by a random walk , then the initial chain length is
r 0 = l N {\displaystyle r_{0}=l{\sqrt {N}}} If we assume that one end of the chain is at the origin, then the probability that a block of size d x 1 d x 2 d x 3 {\displaystyle dx_{1}dx_{2}dx_{3}} around the origin will contain the other end of the chain, ( x 1 , x 2 , x 3 ) {\displaystyle (x_{1},x_{2},x_{3})} , assuming a Gaussian probability density function , is
p ( x 1 , x 2 , x 3 ) = b 3 π 3 / 2 exp [ − b 2 ( x 1 2 + x 2 2 + x 3 2 ) ] ; b := 3 2 N l 2 {\displaystyle p(x_{1},x_{2},x_{3})={\cfrac {b^{3}}{\pi ^{3/2}}}~\exp[-b^{2}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})]~;~~b:={\sqrt {\cfrac {3}{2Nl^{2}}}}} The configurational entropy of a single chain from Boltzmann statistical mechanics is
s = c − k B b 2 r 2 {\displaystyle s=c-k_{B}b^{2}r^{2}} where c {\displaystyle c} is a constant. The total entropy in a network of n {\displaystyle n} chains is therefore
Δ S = − 1 2 n k B ( λ 1 2 + λ 2 2 + λ 3 2 − 3 ) = − 1 2 n k B ( I 1 − 3 ) {\displaystyle \Delta S=-{\tfrac {1}{2}}nk_{B}(\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}-3)=-{\tfrac {1}{2}}nk_{B}(I_{1}-3)} where an affine deformation has been assumed. Therefore the strain energy of the deformed network is
W = − θ d S = 1 2 n k B θ ( I 1 − 3 ) {\displaystyle W=-\theta \,dS={\tfrac {1}{2}}nk_{B}\theta (I_{1}-3)} where θ {\displaystyle \theta } is the temperature.
Notes and references [ edit ] ^ a b Arruda, E. M. and Boyce, M. C. , 1993, A three-dimensional model for the large stretch behavior of rubber elastic materials, , J. Mech. Phys. Solids, 41(2), pp. 389–412. ^ Bergstrom, J. S. and Boyce, M. C., 2001, Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity , Macromolecules, 34 (3), pp 614–626, doi :10.1021/ma0007942 . ^ Horgan, C. O. and Saccomandi, G., 2002, A molecular-statistical basis for the Gent constitutive model of rubber elasticity , Journal of Elasticity, 68(1), pp. 167–176. ^ Hiermaier, S. J., 2008, Structures under Crash and Impact , Springer. ^ Kaliske, M. and Rothert, H., 1997, On the finite element implementation of rubber-like materials at finite strains , Engineering Computations, 14(2), pp. 216–232. ^ Ogden, R. W., 1984, Non-linear elastic deformations , Dover.