A theorem that determines the radius of convergence of a power series.
In mathematics , the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard , describing the radius of convergence of a power series . It was published in 1821 by Cauchy,[ 1] but remained relatively unknown until Hadamard rediscovered it.[ 2] Hadamard's first publication of this result was in 1888;[ 3] he also included it as part of his 1892 Ph.D. thesis.[ 4]
Theorem for one complex variable [ edit ] Consider the formal power series in one complex variable z of the form f ( z ) = ∑ n = 0 ∞ c n ( z − a ) n {\displaystyle f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}} where a , c n ∈ C . {\displaystyle a,c_{n}\in \mathbb {C} .}
Then the radius of convergence R {\displaystyle R} of f at the point a is given by 1 R = lim sup n → ∞ ( | c n | 1 / n ) {\displaystyle {\frac {1}{R}}=\limsup _{n\to \infty }\left(|c_{n}|^{1/n}\right)} where lim sup denotes the limit superior , the limit as n approaches infinity of the supremum of the sequence values after the n th position. If the sequence values is unbounded so that the lim sup is ∞, then the power series does not converge near a , while if the lim sup is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.
Without loss of generality assume that a = 0 {\displaystyle a=0} . We will show first that the power series ∑ n c n z n {\textstyle \sum _{n}c_{n}z^{n}} converges for | z | < R {\displaystyle |z|<R} , and then that it diverges for | z | > R {\displaystyle |z|>R} .
First suppose | z | < R {\displaystyle |z|<R} . Let t = 1 / R {\displaystyle t=1/R} not be 0 {\displaystyle 0} or ± ∞ . {\displaystyle \pm \infty .} For any ε > 0 {\displaystyle \varepsilon >0} , there exists only a finite number of n {\displaystyle n} such that | c n | n ≥ t + ε {\textstyle {\sqrt[{n}]{|c_{n}|}}\geq t+\varepsilon } . Now | c n | ≤ ( t + ε ) n {\displaystyle |c_{n}|\leq (t+\varepsilon )^{n}} for all but a finite number of c n {\displaystyle c_{n}} , so the series ∑ n c n z n {\textstyle \sum _{n}c_{n}z^{n}} converges if | z | < 1 / ( t + ε ) {\displaystyle |z|<1/(t+\varepsilon )} . This proves the first part.
Conversely, for ε > 0 {\displaystyle \varepsilon >0} , | c n | ≥ ( t − ε ) n {\displaystyle |c_{n}|\geq (t-\varepsilon )^{n}} for infinitely many c n {\displaystyle c_{n}} , so if | z | = 1 / ( t − ε ) > R {\displaystyle |z|=1/(t-\varepsilon )>R} , we see that the series cannot converge because its n th term does not tend to 0.[ 5]
Theorem for several complex variables [ edit ] Let α {\displaystyle \alpha } be an n -dimensional vector of natural numbers ( α = ( α 1 , ⋯ , α n ) ∈ N n {\displaystyle \alpha =(\alpha _{1},\cdots ,\alpha _{n})\in \mathbb {N} ^{n}} ) with ‖ α ‖ := α 1 + ⋯ + α n {\displaystyle \|\alpha \|:=\alpha _{1}+\cdots +\alpha _{n}} , then f ( z ) {\displaystyle f(z)} converges with radius of convergence ρ = ( ρ 1 , ⋯ , ρ n ) ∈ R n {\displaystyle \rho =(\rho _{1},\cdots ,\rho _{n})\in \mathbb {R} ^{n}} , ρ α = ρ 1 α 1 ⋯ ρ n α n {\displaystyle \rho ^{\alpha }=\rho _{1}^{\alpha _{1}}\cdots \rho _{n}^{\alpha _{n}}} if and only if lim sup ‖ α ‖ → ∞ | c α | ρ α ‖ α ‖ = 1 {\displaystyle \limsup _{\|\alpha \|\to \infty }{\sqrt[{\|\alpha \|}]{|c_{\alpha }|\rho ^{\alpha }}}=1} of the multidimensional power series f ( z ) = ∑ α ≥ 0 c α ( z − a ) α := ∑ α 1 ≥ 0 , … , α n ≥ 0 c α 1 , … , α n ( z 1 − a 1 ) α 1 ⋯ ( z n − a n ) α n . {\displaystyle f(z)=\sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }:=\sum _{\alpha _{1}\geq 0,\ldots ,\alpha _{n}\geq 0}c_{\alpha _{1},\ldots ,\alpha _{n}}(z_{1}-a_{1})^{\alpha _{1}}\cdots (z_{n}-a_{n})^{\alpha _{n}}.}
From [ 6]
Set z = a + t ρ {\displaystyle z=a+t\rho } ( z i = a i + t ρ i ) . {\displaystyle (z_{i}=a_{i}+t\rho _{i}).} Then
∑ α ≥ 0 c α ( z − a ) α = ∑ α ≥ 0 c α ρ α t ‖ α ‖ = ∑ μ ≥ 0 ( ∑ ‖ α ‖ = μ | c α | ρ α ) t μ . {\displaystyle \sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }=\sum _{\alpha \geq 0}c_{\alpha }\rho ^{\alpha }t^{\|\alpha \|}=\sum _{\mu \geq 0}\left(\sum _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }\right)t^{\mu }.} This is a power series in one variable t {\displaystyle t} which converges for | t | < 1 {\displaystyle |t|<1} and diverges for | t | > 1 {\displaystyle |t|>1} . Therefore, by the Cauchy–Hadamard theorem for one variable
lim sup μ → ∞ ∑ ‖ α ‖ = μ | c α | ρ α μ = 1. {\displaystyle \limsup _{\mu \to \infty }{\sqrt[{\mu }]{\sum _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }}}=1.} Setting | c m | ρ m = max ‖ α ‖ = μ | c α | ρ α {\displaystyle |c_{m}|\rho ^{m}=\max _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }} gives us an estimate
| c m | ρ m ≤ ∑ ‖ α ‖ = μ | c α | ρ α ≤ ( μ + 1 ) n | c m | ρ m . {\displaystyle |c_{m}|\rho ^{m}\leq \sum _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }\leq (\mu +1)^{n}|c_{m}|\rho ^{m}.} Because ( μ + 1 ) n μ → 1 {\displaystyle {\sqrt[{\mu }]{(\mu +1)^{n}}}\to 1} as μ → ∞ {\displaystyle \mu \to \infty }
| c m | ρ m μ ≤ ∑ ‖ α ‖ = μ | c α | ρ α μ ≤ | c m | ρ m μ ⟹ ∑ ‖ α ‖ = μ | c α | ρ α μ = | c m | ρ m μ ( μ → ∞ ) . {\displaystyle {\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\leq {\sqrt[{\mu }]{\sum _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }}}\leq {\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\implies {\sqrt[{\mu }]{\sum _{\|\alpha \|=\mu }|c_{\alpha }|\rho ^{\alpha }}}={\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\qquad (\mu \to \infty ).} Therefore
lim sup ‖ α ‖ → ∞ | c α | ρ α ‖ α ‖ = lim sup μ → ∞ | c m | ρ m μ = 1. {\displaystyle \limsup _{\|\alpha \|\to \infty }{\sqrt[{\|\alpha \|}]{|c_{\alpha }|\rho ^{\alpha }}}=\limsup _{\mu \to \infty }{\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}=1.} ^ Cauchy, A. L. (1821), Analyse algébrique . ^ Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , Springer-Verlag, pp. 116–117 , ISBN 978-0-387-96302-0 . Translated from the Italian by Warren Van Egmond. ^ Hadamard, J. , "Sur le rayon de convergence des séries ordonnées suivant les puissances d'une variable", C. R. Acad. Sci. Paris , 106 : 259– 262 . ^ Hadamard, J. (1892), "Essai sur l'étude des fonctions données par leur développement de Taylor" , Journal de Mathématiques Pures et Appliquées , 4e Série, VIII . Also in Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques , Paris: Gauthier-Villars et fils, 1892. ^ Lang, Serge (2002), Complex Analysis: Fourth Edition , Springer, pp. 55– 56, ISBN 0-387-98592-1 Graduate Texts in Mathematics ^ Shabat, B.V. (1992), Introduction to complex analysis Part II. Functions of several variables , American Mathematical Society, pp. 32– 33, ISBN 978-0821819753