DEAP (software)

DEAP
Original author(s)François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, Christian Gagné
Developer(s)François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner
Initial release2009 (2009)
Stable release
1.4.1[1] Edit this on Wikidata / 21 July 2023; 15 months ago (21 July 2023)
Repository
Written inPython
Operating systemCross-platform
TypeEvolutionary computation framework
LicenseLGPL
Websitegithub.com/deap

Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas.[2][3][4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic flow[5] and estimation of distribution algorithm. It is developed at Université Laval since 2009.

Example

[edit]

The following code gives a quick overview how the Onemax problem optimization with genetic algorithm can be implemented with DEAP.

import array import random from deap import creator, base, tools, algorithms  creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax)  toolbox = base.Toolbox() toolbox.register("attr_bool", random.randint, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 100) toolbox.register("population", tools.initRepeat, list, toolbox.individual)  evalOneMax = lambda individual: (sum(individual),)  toolbox.register("evaluate", evalOneMax) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3)  population = toolbox.population(n=300) NGEN = 40  for gen in range(NGEN):     offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)     fits = toolbox.map(toolbox.evaluate, offspring)     for fit, ind in zip(fits, offspring):         ind.fitness.values = fit     population = offspring 

See also

[edit]

References

[edit]
  1. ^ "Release 1.4.1". 21 July 2023. Retrieved 30 July 2023.
  2. ^ Fortin, Félix-Antoine; F.-M. De Rainville; M-A. Gardner; C. Gagné; M. Parizeau (2012). "DEAP: Evolutionary Algorithms Made Easy". Journal of Machine Learning Research. 13: 2171–2175.
  3. ^ De Rainville, François-Michel; F.-A Fortin; M-A. Gardner; C. Gagné; M. Parizeau (2014). "DEAP: Enabling Nimber Evolutionss" (PDF). ACM SIGEVOlution. 6 (2): 17–26. doi:10.1145/2597453.2597455. S2CID 14949980.
  4. ^ De Rainville, François-Michel; F.-A Fortin; M-A. Gardner; C. Gagné; M. Parizeau (2012). "DEAP: A Python Framework for Evolutionary Algorithms" (PDF). In Companion Proceedings of the Genetic and Evolutionary Computation Conference.
  5. ^ "Creation of one algorithm to manage traffic systems". Social Impact Open Repository. Archived from the original on 2017-09-05. Retrieved 2017-09-05.
[edit]