File:Geometrically finite Julia set.png
Size of this preview: 780 × 600 pixels. Other resolutions: 312 × 240 pixels | 624 × 480 pixels | 999 × 768 pixels | 1,280 × 985 pixels | 2,600 × 2,000 pixels.
Original file (2,600 × 2,000 pixels, file size: 165 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionGeometrically finite Julia set.png | English: Geometrically finite Julia set for the family of polynomials F(z,C):=z(1+z)(1+z)(C-(2C+1)z+(3+4C)zz/4). Here parameter C = 1.02+0.05i. "A rational map is called geometrically finite if every critical point in the Julia set is eventually periodic". Map and description by Tomoki Kawahira[1] |
Date | |
Source | Own work |
Author | Adam majewski |
Other versions |
|
c source code
/* Adam Majewski adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero Structure of a program or how to analyze the program ============== Image X ======================== DrawImageOfX -> DrawPointOfX -> ComputeColorOfX first 2 functions are identical for every X check only last function = ComputeColorOfX which computes color of one pixel ! ========================================== --------------------------------- indent d.c default is gnu style ------------------- c console progam export OMP_DISPLAY_ENV="TRUE" gcc d.c -lm -Wall -march=native -fopenmp time ./a.out > b.txt gcc d.c -lm -Wall -march=native -fopenmp time ./a.out time ./a.out >i.txt time ./a.out >e.txt convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png */ #include <stdio.h> #include <stdlib.h> // malloc #include <string.h> // strcat #include <math.h> // M_PI; needs -lm also #include <complex.h> #include <omp.h> // OpenMP #include <limits.h> // Maximum value for an unsigned long long int // https://sourceforge.net/p/predef/wiki/Standards/ #if defined(__STDC__) #define PREDEF_STANDARD_C_1989 #if defined(__STDC_VERSION__) #if (__STDC_VERSION__ >= 199409L) #define PREDEF_STANDARD_C_1994 #endif #if (__STDC_VERSION__ >= 199901L) #define PREDEF_STANDARD_C_1999 #endif #endif #endif /* --------------------------------- global variables and consts ------------------------------------------------------------ */ // virtual 2D array and integer ( screen) coordinate // Indexes of array starts from 0 not 1 //unsigned int ix, iy; // var static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1 static unsigned int ixMax; // static unsigned int iWidth; // horizontal dimension of array static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1 static unsigned int iyMax; // static unsigned int iHeight = 10000; // // The size of array has to be a positive constant integer static unsigned long long int iSize; // = iWidth*iHeight; // memmory 1D array unsigned char *data; unsigned char *edge; //unsigned char *edge2; // unsigned int i; // var = index of 1D array //static unsigned int iMin = 0; // Indexes of array starts from 0 not 1 static unsigned int iMax; // = i2Dsize-1 = // The size of array has to be a positive constant integer // unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array // see SetPlane double radius = 1.2; complex double center = 0.0; double DisplayAspectRatio = 1.3; // https://en.wikipedia.org/wiki/Aspect_ratio_(image) // dx = dy compare setup : iWidth = iHeight; double ZxMin; //= -1.3; //-0.05; double ZxMax;// = 1.3; //0.75; double ZyMin;// = -1.3; //-0.1; double ZyMax;// = 1.3; //0.7; double PixelWidth; // =(ZxMax-ZxMin)/ixMax; double PixelHeight; // =(ZyMax-ZyMin)/iyMax; double ratio; /* ER = pow(10,ERe); AR = pow(10,-ARe); */ //int ARe ; // increase ARe until black ( unknown) points disapear //int ERe ; double ER; double ER2; //= 1e60; double AR; // bigger values do not works double AR2; double AR12; int IterMax = 100000; /* colors = shades of gray from 0 to 255 unsigned char colorArray[2][2]={{255,231}, {123,99}}; color = 245; exterior */ unsigned char iColorOfExterior = 245; unsigned char iColorOfInterior1 = 99; unsigned char iColorOfInterior2 = 183; unsigned char iColorOfBoundary = 0; unsigned char iColorOfUnknown = 5; // pixel counters unsigned long long int uUnknown = 0; unsigned long long int uInterior = 0; unsigned long long int uExterior = 0; // critical points complex double zc1a = -0.47068779553447764874 + 0.0026098248687148155323*I; //period 1 attract complex double zc1p = 0.24496023578261891251 + 0.0050657319837705428595*I; // period 1 attracting from parabolic // periodic points = attractors complex double zp1a =-0.33036439123272171026-0.035156244692189524137*I ; //period 1 attract complex double zp1p = 0.024367377494104072722 +0.043208283893844831591*I ; // period 1 attracting from parabolic /* F(z,C):=z(1+z)(1+z)(C-(2C+1)z+(3+4C)zz/4) Then for any C, F(z,C) has the following properties: 1. z=0 is a fixed point with multiplier C. 2. z=-1 is a critical point and F(-1,C)=0. 3. z=1 is another critical point, and F(1,C)=-1, thus F(F(1,C),C)=0 C*z^5+(3*z^5)/4+z^4/2-2*C*z^3-(5*z^3)/4-z^2+C*z C*z^5 +(3*z^5)/4 +z^4/2 -2*C*z^3 -(5*z^3)/4 -z^2 +C*z ============== (%o12) C*z^5+(3*z^5)/4+z^4/2-2*C*z^3-(5*z^3)/4-z^2+C*z (%i13) coeff(f,z,5); (%o13) C+3/4 = 0.058*%i+1.77 (%i14) coeff(f,z,4); (%o14) 1/2 (%i15) coeff(f,z,3); (%o15) (-2*C)-5/4 = (-0.116*%i)-3.29 (%i16) coeff(f,z,2); (%o16) -1 (%i17) coeff(f,z,1); (%o17) C = 1.02 + 0.05*I; (%i18) coeff(f,z,0); (%o18) 0 ============================= coefficients read from input file kawahira_sc_c3.txt degree 5 coefficient = ( +1.7700000000000000 +0.0580000000000000*i) degree 4 coefficient = ( +0.5000000000000000 +0.0000000000000000*i) degree 3 coefficient = ( -3.2900000000000000 -0.1160000000000000*i) degree 2 coefficient = ( -1.0000000000000000 +0.0000000000000000*i) degree 1 coefficient = ( +1.0200000000000000 +0.0500000000000000*i) degree 0 coefficient = ( +0.0000000000000000 +0.0000000000000000*i) Input polynomial p(z)=(1.7700000000000000178+0.058000000000000002942i)*z^5+(0.5+0i)*z^4+(-3.2900000000000000355-0.11600000000000000588i)*z^3+(-1+0i)*z^2+(1.0200000000000000178+0.050000000000000002776i)*z^1 3 critical points found cp#0: -0.47068779553447764874,0.0026098248687148155323 . It's critical orbit is bounded and enters cycle #0 length=1 and it's stability = |multiplier|=0.66225 =attractive internal angle = 0.97054734997537162045 cycle = { -0.33036439123272171026,-0.035156244692189524137 ; } cp#1: 0.24496023578261891251,0.0050657319837705428595 . It's critical orbit is bounded and enters cycle #1 length=1 and it's stability = |multiplier|=0.98594 =attractive internal angle = 0.99082387912800862217 cycle = { 0.024367377494104072722,0.043208283893844831591 ; } cp#2: -1.0000287546513304537,-0.00068489313584920526092 . It's critical orbit is bounded and enters cycle #1 */ // C=1.02+0.05i complex double C = 1.02 + 0.05*I; /* ------------------------------------------ functions -------------------------------------------------------------*/ //------------------complex numbers ----------------------------------------------------- // from screen to world coordinate ; linear mapping // uses global cons double GiveZx (int ix) { return (ZxMin + ix * PixelWidth); } // uses globaal cons double GiveZy (int iy) { return (ZyMax - iy * PixelHeight); } // reverse y axis complex double GiveZ (int ix, int iy) { double Zx = GiveZx (ix); double Zy = GiveZy (iy); return Zx + Zy * I; } double cabs2(complex double z){ return creal(z)*creal(z)+cimag(z)*cimag(z); } // ===================== int IsPointInsideTrap1(complex double z){ if ( cabs2(z - zp1a) < AR2) {return 1;} // circle with prabolic point zp on it's boundary return 0; // outside } // ===================== int IsPointInsideTrap2(complex double z){ if (cabs2(z - zp1p) <AR2) {return 1;} // circle around periodic point return 0; // outside } complex double F(complex double z, complex double C){ return (z*(1+z)*(1+z)*(C-(2*C+1)*z+(3+4*C)*z*z/4)); }; // ****************** DYNAMICS = trap tests ( target sets) **************************** /* ----------- array functions = drawing -------------- */ /* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */ unsigned int Give_i (unsigned int ix, unsigned int iy) { return ix + iy * iWidth; } // f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5 unsigned char ComputeColor_Fatou (complex double z, int IterMax) { double r2; int i; // number of iteration for (i = 0; i < IterMax; ++i) { z = F(z,C); // complex iteration f(z)=z^6+A*z+c r2 =cabs2(z); if (r2 > ER2) // esaping = exterior { uExterior += 1; return iColorOfExterior; } // solid color for each Fatou components if ( IsPointInsideTrap1(z)) { uInterior +=1; return iColorOfInterior1; } // 50 + (i % 114); } if (IsPointInsideTrap2(z)){ uInterior +=1; return iColorOfInterior2;} } uUnknown += 1; return iColorOfUnknown; } // plots raster point (ix,iy) int DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax) { int i; /* index of 1D array */ unsigned char iColor = 0; complex double z; i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */ z = GiveZ (ix, iy); iColor = ComputeColor_Fatou (z, IterMax); A[i] = iColor; // interior return 0; } // fill array // uses global var : ... // scanning complex plane int DrawFatouImage (unsigned char A[], int IterMax) { unsigned int ix, iy; // pixel coordinate fprintf (stdout, "compute Fatou image \n"); // for all pixels of image #pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior) for (iy = iyMin; iy <= iyMax; ++iy) { fprintf (stderr, " %d from %d \r", iy, iyMax); //info for (ix = ixMin; ix <= ixMax; ++ix) DrawFatouPoint (A, ix, iy, IterMax); // } return 0; } //========= int IsInside (int x, int y, int xcenter, int ycenter, int r){ double dx = x- xcenter; double dy = y - ycenter; double d = sqrt(dx*dx+dy*dy); if (d<r) return 1; return 0; } int PlotBigPoint(complex double z, unsigned char A[]){ unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth; unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight; unsigned int i; /* mark seed point by big pixel */ int iSide =1.0*iWidth/4000.0 ; /* half of width or height of big pixel */ int iY; int iX; for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) { i= Give_i(iX,iY); /* index of _data array */ A[i]= 255-A[i];}}} return 0; } // fill array // uses global var : ... // scanning complex plane int MarkAttractors (unsigned char A[]) { fprintf (stderr, "mark attractors \n"); PlotBigPoint(zp1a, A); // period 114 cycle PlotBigPoint(zp1p, A); // period 2 attracting cycle return 0; } // ===================== int IsPointInsideTraps(unsigned int ix, unsigned int iy){ complex double z = GiveZ (ix, iy); if ( IsPointInsideTrap1(z)) {return 1;} // circle with prabolic point on it's boundary if (IsPointInsideTrap2(z)) {return 1;} return 0; // outside } int MarkTraps(unsigned char A[]){ unsigned int ix, iy; // pixel coordinate unsigned int i; fprintf (stderr, "Mark traps \n"); // for all pixels of image #pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior) for (iy = iyMin; iy <= iyMax; ++iy) { fprintf (stderr, " %d from %d \r", iy, iyMax); //info for (ix = ixMin; ix <= ixMax; ++ix){ if (IsPointInsideTraps(ix, iy)) { i= Give_i(ix,iy); /* index of _data array */ A[i]= 255-A[i]; // inverse color }}} return 0; } int PlotPoint(complex double z, unsigned char A[]){ unsigned int ix = (creal(z)-ZxMin)/PixelWidth; unsigned int iy = (ZyMax - cimag(z))/PixelHeight; unsigned int i = Give_i(ix,iy); /* index of _data array */ A[i]= 255-A[i]; // Mark point with inveres color return 0; } int DrawForwardOrbit(complex double z, unsigned long long int iMax, unsigned char A[] ) { unsigned long long int i; /* nr of point of critical orbit */ PlotBigPoint(z, A); /* forward orbit of critical point */ for (i=1;i<iMax ; ++i) { z = F(z,C); if (cabs2(z - zp1p) > 2.0) {return 1;} // escaping PlotBigPoint(z, A); } return 0; } // *********************************************************************************************** // ********************** edge detection usung Sobel filter *************************************** // *************************************************************************************************** // from Source to Destination int ComputeBoundaries(unsigned char S[], unsigned char D[]) { unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */ unsigned int i; /* index of 1D array */ /* sobel filter */ unsigned char G, Gh, Gv; // boundaries are in D array ( global var ) // clear D array memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior); // printf(" find boundaries in S array using Sobel filter\n"); #pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax) for(iY=1;iY<iyMax-1;++iY){ for(iX=1;iX<ixMax-1;++iX){ Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)]; Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)]; G = sqrt(Gh*Gh + Gv*Gv); i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */ if (G==0) {D[i]=255;} /* background */ else {D[i]=0;} /* boundary */ } } return 0; } // copy from Source to Destination int CopyBoundaries(unsigned char S[], unsigned char D[]) { unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */ unsigned int i; /* index of 1D array */ //printf("copy boundaries from S array to D array \n"); for(iY=1;iY<iyMax-1;++iY) for(iX=1;iX<ixMax-1;++iX) {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;} return 0; } // ******************************************************************************************* // ********************************** save A array to pgm file **************************** // ********************************************************************************************* int SaveArray2PGMFile (unsigned char A[], int a, int b, int c, char *comment) { FILE *fp; const unsigned int MaxColorComponentValue = 255; /* color component is coded from 0 to 255 ; it is 8 bit color file */ char name[100]; /* name of file */ snprintf (name, sizeof name, "%d_%d_%d", a, b, c ); /* */ char *filename = strcat (name, ".pgm"); char long_comment[200]; sprintf (long_comment, "fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) %s", comment); // save image array to the pgm file fp = fopen (filename, "wb"); // create new file,give it a name and open it in binary mode fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp); // write whole array with image data bytes to the file in one step fclose (fp); // info if ( rSize == iSize) { printf ("File %s saved ", filename); if (long_comment == NULL || strlen (long_comment) == 0) printf ("\n"); else { printf (". Comment = %s \n", long_comment); } } else {printf("wrote %zu elements out of %llu requested\n", rSize, iSize);} return 0; } int PrintCInfo () { printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse // OpenMP version is displayed in the console : export OMP_DISPLAY_ENV="TRUE" printf ("__STDC__ = %d\n", __STDC__); printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__); printf ("c dialect = "); switch (__STDC_VERSION__) { // the format YYYYMM case 199409L: printf ("C94\n"); break; case 199901L: printf ("C99\n"); break; case 201112L: printf ("C11\n"); break; case 201710L: printf ("C18\n"); break; //default : /* Optional */ } return 0; } int PrintProgramInfo () { // display info messages printf ("Numerical approximation of Julia set for F(z,C) = z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) \n"); //printf ("iPeriodParent = %d \n", iPeriodParent); //printf ("iPeriodOfChild = %d \n", iPeriodChild); printf ("parameter C = ( %.16f ; %.16f ) \n", creal (C), cimag (C)); printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin); printf ("PixelWidth = %.16f \n", PixelWidth); printf ("AR = %.16f = %f *PixelWidth\n", AR, AR / PixelWidth); printf("pixel counters\n"); printf ("uUnknown = %llu\n", uUnknown); printf ("uExterior = %llu\n", uExterior); printf ("uInterior = %llu\n", uInterior); printf ("Sum of pixels = %llu\n", uInterior+uExterior + uUnknown); printf ("all pixels of the array = iSize = %llu\n", iSize); // image corners in world coordinate // center and radius // center and zoom // GradientRepetition printf ("Maximal number of iterations = iterMax = %d \n", IterMax); printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio); // return 0; } int SetPlane(complex double center, double radius, double a_ratio){ ZxMin = creal(center) - radius*a_ratio; ZxMax = creal(center) + radius*a_ratio; //0.75; ZyMin = cimag(center) - radius; // inv ZyMax = cimag(center) + radius; //0.7; return 0; } // ***************************************************************************** //;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; // ************************************************************************************** int setup () { fprintf (stderr, "setup start\n"); /* 2D array ranges */ iWidth = iHeight* DisplayAspectRatio ; iSize = iWidth * iHeight; // size = number of points in array // iy iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1]. //ix ixMax = iWidth - 1; /* 1D array ranges */ // i1Dsize = i2Dsize; // 1D array with the same size as 2D array iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1]. SetPlane( center, radius, DisplayAspectRatio ); /* Pixel sizes */ PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate PixelHeight = (ZyMax - ZyMin) / iyMax; ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ... ER = 2.0; // ER2 = ER*ER; AR = 18.5*PixelWidth*iWidth/2000.0 ; // adjust first number AR2 = AR * AR; //AR12 = AR/2.0; /* create dynamic 1D arrays for colors ( shades of gray ) */ data = malloc (iSize * sizeof (unsigned char)); edge = malloc (iSize * sizeof (unsigned char)); if (data == NULL || edge == NULL) { fprintf (stderr, " Could not allocate memory"); return 1; } fprintf (stderr, " end of setup \n"); return 0; } // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; int end () { fprintf (stderr, " allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation free (data); free(edge); PrintProgramInfo (); PrintCInfo (); return 0; } // ******************************************************************************************************************** /* ----------------------------------------- main -------------------------------------------------------------*/ // ******************************************************************************************************************** int main () { setup (); DrawFatouImage (data, IterMax); // first find Fatou SaveArray2PGMFile (data, iWidth, IterMax, 0, "Fatou, name = iWidth_IterMax_n"); ComputeBoundaries(data,edge); SaveArray2PGMFile (edge, iWidth, IterMax, 1, "Boundaries of Fatou; name = iWidth_IterMax_n"); CopyBoundaries(edge,data); SaveArray2PGMFile (data, iWidth, IterMax, 2, "Fatou with boundaries; name = iWidth_IterMax_n"); //MarkAttractors(data); MarkTraps(data); SaveArray2PGMFile (data, iWidth, IterMax, 4, "Fatou with boundaries and traps; name = iWidth_IterMax_n"); DrawForwardOrbit(zc1p, 10000, data); SaveArray2PGMFile (data, iWidth, IterMax, 5, "Fatou with boundaries and traps, critical orbit; name = iWidth_IterMax_n"); end (); return 0; }
text output
time ./a.out > a.txt OPENMP DISPLAY ENVIRONMENT BEGIN _OPENMP = '201511' OMP_DYNAMIC = 'FALSE' OMP_NESTED = 'FALSE' OMP_NUM_THREADS = '8' OMP_SCHEDULE = 'DYNAMIC' OMP_PROC_BIND = 'FALSE' OMP_PLACES = '' OMP_STACKSIZE = '0' OMP_WAIT_POLICY = 'PASSIVE' OMP_THREAD_LIMIT = '4294967295' OMP_MAX_ACTIVE_LEVELS = '2147483647' OMP_CANCELLATION = 'FALSE' OMP_DEFAULT_DEVICE = '0' OMP_MAX_TASK_PRIORITY = '0' OMP_DISPLAY_AFFINITY = 'FALSE' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OPENMP DISPLAY ENVIRONMENT END compute Fatou image File 13000_100000_0.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) Fatou, name = iWidth_IterMax_n File 13000_100000_1.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) Boundaries of Fatou; name = iWidth_IterMax_n File 13000_100000_2.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) Fatou with boundaries; name = iWidth_IterMax_n File 13000_100000_4.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) Fatou with boundaries and traps; name = iWidth_IterMax_n File 13000_100000_5.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) Fatou with boundaries and traps, critical orbit; name = iWidth_IterMax_n Numerical approximation of Julia set for F(z,C) = z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) parameter C = ( 1.0200000000000000 ; 0.0500000000000000 ) Image Width = 3.120000 in world coordinate PixelWidth = 0.0002400184629587 AR = 0.0288622201707824 = 120.250000 *PixelWidth pixel counters uUnknown = 0 uExterior = 48939153 uInterior = 18681357 Sum of pixels = 67620510 all pixels of the array = iSize = 130000000 Maximal number of iterations = iterMax = 100000 ratio of image = 1.000000 ; it should be 1.000 ... gcc version: 9.3.0 __STDC__ = 1 __STDC_VERSION__ = 201710 c dialect = C18 setup start end of setup Mark traps 9999 allways free memory (deallocate ) to avoid memory leaks real 0m9,304s user 0m55,658s sys 0m0,628s
Image Magic src code
convert 13000_100000_2.pgm -resize 2600x2000 2.png
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
References
some value
30 September 2020
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:19, 30 September 2020 | 2,600 × 2,000 (165 KB) | Soul windsurfer | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
PNG file comment |
|
---|---|
File change date and time | 23:12, 30 September 2020 |