File:Geometrically finite Julia set.png

Original file (2,600 × 2,000 pixels, file size: 165 KB, MIME type: image/png)

Summary

Description
English: Geometrically finite Julia set for the family of polynomials F(z,C):=z(1+z)(1+z)(C-(2C+1)z+(3+4C)zz/4). Here parameter C = 1.02+0.05i. "A rational map is called geometrically finite if every critical point in the Julia set is eventually periodic". Map and description by Tomoki Kawahira[1]
Date
Source Own work
Author Adam majewski
Other versions

c source code

/*       Adam Majewski   adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero             Structure of a program or how to analyze the program          ============== Image X ========================      DrawImageOfX -> DrawPointOfX -> ComputeColorOfX       first 2 functions are identical for every X   check only last function =  ComputeColorOfX   which computes color of one pixel !              ==========================================       ---------------------------------   indent d.c    default is gnu style    -------------------      c console progam       export  OMP_DISPLAY_ENV="TRUE"	   gcc d.c -lm -Wall -march=native -fopenmp   time ./a.out > b.txt     gcc d.c -lm -Wall -march=native -fopenmp     time ./a.out    time ./a.out >i.txt   time ./a.out >e.txt                     convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png           */  #include <stdio.h> #include <stdlib.h>		// malloc #include <string.h>		// strcat #include <math.h>		// M_PI; needs -lm also #include <complex.h> #include <omp.h>		// OpenMP #include <limits.h>		// Maximum value for an unsigned long long int    // https://sourceforge.net/p/predef/wiki/Standards/  #if defined(__STDC__) #define PREDEF_STANDARD_C_1989 #if defined(__STDC_VERSION__) #if (__STDC_VERSION__ >= 199409L) #define PREDEF_STANDARD_C_1994 #endif #if (__STDC_VERSION__ >= 199901L) #define PREDEF_STANDARD_C_1999 #endif #endif #endif     /* --------------------------------- global variables and consts ------------------------------------------------------------ */    // virtual 2D array and integer ( screen) coordinate // Indexes of array starts from 0 not 1  //unsigned int ix, iy; // var static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1 static unsigned int ixMax;	// static unsigned int iWidth;	// horizontal dimension of array  static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1 static unsigned int iyMax;	//  static unsigned int iHeight = 10000;	//   // The size of array has to be a positive constant integer  static unsigned long long int iSize;	// = iWidth*iHeight;   // memmory 1D array  unsigned char *data; unsigned char *edge; //unsigned char *edge2;  // unsigned int i; // var = index of 1D array //static unsigned int iMin = 0; // Indexes of array starts from 0 not 1 static unsigned int iMax;	// = i2Dsize-1  =  // The size of array has to be a positive constant integer  // unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array    // see SetPlane  double radius = 1.2;  complex double center = 0.0; double  DisplayAspectRatio  = 1.3; // https://en.wikipedia.org/wiki/Aspect_ratio_(image) // dx = dy compare setup : iWidth = iHeight; double ZxMin; //= -1.3;	//-0.05; double ZxMax;// = 1.3;	//0.75; double ZyMin;// = -1.3;	//-0.1; double ZyMax;// = 1.3;	//0.7; double PixelWidth;	// =(ZxMax-ZxMin)/ixMax; double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;  double ratio;    /*   ER = pow(10,ERe);   AR = pow(10,-ARe); */ //int ARe ;			// increase ARe until black ( unknown) points disapear  //int ERe ; double ER; double ER2;			//= 1e60; double AR; // bigger values do not works double AR2; double AR12;    int IterMax = 100000;   /* colors = shades of gray from 0 to 255      unsigned char colorArray[2][2]={{255,231},    {123,99}};    color = 245;  exterior  */ unsigned char iColorOfExterior = 245; unsigned char iColorOfInterior1 = 99; unsigned char iColorOfInterior2 = 183; unsigned char iColorOfBoundary = 0; unsigned char iColorOfUnknown = 5;  // pixel counters unsigned long long int uUnknown = 0; unsigned long long int uInterior = 0; unsigned long long int uExterior = 0;    // critical points complex double zc1a = -0.47068779553447764874 + 0.0026098248687148155323*I; //period 1 attract complex double zc1p = 0.24496023578261891251 + 0.0050657319837705428595*I; // period 1  attracting from parabolic  // periodic points = attractors complex double zp1a =-0.33036439123272171026-0.035156244692189524137*I ; //period 1 attract complex double zp1p = 0.024367377494104072722 +0.043208283893844831591*I ; // period 1 attracting from parabolic    /*    F(z,C):=z(1+z)(1+z)(C-(2C+1)z+(3+4C)zz/4)     Then for any C, F(z,C) has the following properties:    1. z=0 is a fixed point with multiplier C.   2. z=-1 is a critical point and F(-1,C)=0.   3. z=1 is another critical point, and F(1,C)=-1, thus F(F(1,C),C)=0       C*z^5+(3*z^5)/4+z^4/2-2*C*z^3-(5*z^3)/4-z^2+C*z    C*z^5   +(3*z^5)/4   +z^4/2   -2*C*z^3   -(5*z^3)/4   -z^2   +C*z    ==============   (%o12) C*z^5+(3*z^5)/4+z^4/2-2*C*z^3-(5*z^3)/4-z^2+C*z    (%i13) coeff(f,z,5);   (%o13) C+3/4 = 0.058*%i+1.77     (%i14) coeff(f,z,4);   (%o14) 1/2    (%i15) coeff(f,z,3);   (%o15) (-2*C)-5/4 = (-0.116*%i)-3.29     (%i16) coeff(f,z,2);   (%o16) -1    (%i17) coeff(f,z,1);   (%o17) C =  1.02 + 0.05*I;     (%i18) coeff(f,z,0);   (%o18) 0     =============================    coefficients read from input file kawahira_sc_c3.txt   degree 5 coefficient = ( +1.7700000000000000 +0.0580000000000000*i)    degree 4 coefficient = ( +0.5000000000000000 +0.0000000000000000*i)    degree 3 coefficient = ( -3.2900000000000000 -0.1160000000000000*i)    degree 2 coefficient = ( -1.0000000000000000 +0.0000000000000000*i)    degree 1 coefficient = ( +1.0200000000000000 +0.0500000000000000*i)    degree 0 coefficient = ( +0.0000000000000000 +0.0000000000000000*i)     Input polynomial p(z)=(1.7700000000000000178+0.058000000000000002942i)*z^5+(0.5+0i)*z^4+(-3.2900000000000000355-0.11600000000000000588i)*z^3+(-1+0i)*z^2+(1.0200000000000000178+0.050000000000000002776i)*z^1    3 critical points found    cp#0: -0.47068779553447764874,0.0026098248687148155323 . It's critical orbit is bounded and enters cycle #0 length=1 and it's stability = |multiplier|=0.66225 =attractive    internal angle = 0.97054734997537162045   cycle = {   -0.33036439123272171026,-0.035156244692189524137 ; }    cp#1: 0.24496023578261891251,0.0050657319837705428595 . It's critical orbit is bounded and enters cycle #1 length=1 and it's stability = |multiplier|=0.98594 =attractive    internal angle = 0.99082387912800862217   cycle = {   0.024367377494104072722,0.043208283893844831591 ; }    cp#2: -1.0000287546513304537,-0.00068489313584920526092 . It's critical orbit is bounded  and enters cycle #1    */    // C=1.02+0.05i complex double C = 1.02 + 0.05*I;   /* ------------------------------------------ functions -------------------------------------------------------------*/      //------------------complex numbers -----------------------------------------------------      // from screen to world coordinate ; linear mapping // uses global cons double GiveZx (int ix) {   return (ZxMin + ix * PixelWidth); }  // uses globaal cons double GiveZy (int iy) {   return (ZyMax - iy * PixelHeight); }				// reverse y axis   complex double GiveZ (int ix, int iy) {   double Zx = GiveZx (ix);   double Zy = GiveZy (iy);    return Zx + Zy * I;     }    double cabs2(complex double z){    return creal(z)*creal(z)+cimag(z)*cimag(z);   }     // ===================== int IsPointInsideTrap1(complex double  z){  	 	  	   if ( cabs2(z - zp1a) < AR2) {return 1;} // circle with prabolic point zp on it's boundary   return 0; // outside    }    // ===================== int IsPointInsideTrap2(complex double  z){  	   if (cabs2(z - zp1p) <AR2) {return 1;} // circle around periodic point 	   return 0; // outside    }   complex double F(complex double z, complex double C){     return (z*(1+z)*(1+z)*(C-(2*C+1)*z+(3+4*C)*z*z/4));   };       // ****************** DYNAMICS = trap tests ( target sets) ****************************   /* -----------  array functions = drawing -------------- */  /* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */ unsigned int Give_i (unsigned int ix, unsigned int iy) {   return ix + iy * iWidth; }    // f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5 unsigned char ComputeColor_Fatou (complex double z, int IterMax) {    	 	   double r2;     int i;			// number of iteration   for (i = 0; i < IterMax; ++i)     {   		        z = F(z,C);		// complex iteration f(z)=z^6+A*z+c       r2 =cabs2(z); 		       if (r2 > ER2) // esaping = exterior 	{ 	  uExterior += 1; 	  return iColorOfExterior; 	}			 	       // solid color for each Fatou components 	       if ( IsPointInsideTrap1(z)) { 	uInterior +=1; 	return iColorOfInterior1;       } // 50 + (i % 114); } 	       if (IsPointInsideTrap2(z)){ 	uInterior +=1; 	return iColorOfInterior2;}  	      }    uUnknown += 1;   return iColorOfUnknown;   }      // plots raster point (ix,iy)  int DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax) {   int i;			/* index of 1D array */   unsigned char iColor = 0;   complex double z;     i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */   z = GiveZ (ix, iy);   iColor = ComputeColor_Fatou (z, IterMax);   A[i] = iColor;		// interior    return 0; }     // fill array  // uses global var :  ... // scanning complex plane  int DrawFatouImage (unsigned char A[], int IterMax) {   unsigned int ix, iy;		// pixel coordinate     fprintf (stdout, "compute Fatou image \n");   // for all pixels of image  #pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)   for (iy = iyMin; iy <= iyMax; ++iy)     {       fprintf (stderr, " %d from %d \r", iy, iyMax);	//info        for (ix = ixMin; ix <= ixMax; ++ix) 	DrawFatouPoint (A, ix, iy, IterMax);	//       }    return 0; }   //=========    int IsInside (int x, int y, int xcenter, int ycenter, int r){  	   double dx = x- xcenter;   double dy = y - ycenter;   double d = sqrt(dx*dx+dy*dy);   if (d<r)      return 1;   return 0; 	    }   int PlotBigPoint(complex double z, unsigned char A[]){  	   unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;   unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;   unsigned int i; 	 	   /* mark seed point by big pixel */   int iSide =1.0*iWidth/4000.0 ; /* half of width or height of big pixel */   int iY;   int iX;   for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){      for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){        if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) { 	i= Give_i(iX,iY); /* index of _data array */ 	A[i]= 255-A[i];}}} 	 	   return 0; 	 }   // fill array  // uses global var :  ... // scanning complex plane  int MarkAttractors (unsigned char A[]) {    	 	 	   fprintf (stderr, "mark attractors \n");      PlotBigPoint(zp1a, A); // period 114  cycle   PlotBigPoint(zp1p, A);	// period 2 attracting cycle     		        	    return 0; }   // ===================== int IsPointInsideTraps(unsigned int ix, unsigned int iy){  	   complex double  z = GiveZ (ix, iy); 	   if ( IsPointInsideTrap1(z)) {return 1;} // circle with prabolic point on it's boundary 	   if (IsPointInsideTrap2(z)) {return 1;} 	   return 0; // outside    }      int MarkTraps(unsigned char A[]){    unsigned int ix, iy;		// pixel coordinate    unsigned int i;     fprintf (stderr, "Mark traps \n");   // for all pixels of image  #pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)   for (iy = iyMin; iy <= iyMax; ++iy)     {       fprintf (stderr, " %d from %d \r", iy, iyMax);	//info        for (ix = ixMin; ix <= ixMax; ++ix){ 	if (IsPointInsideTraps(ix, iy)) { 	  i= Give_i(ix,iy); /* index of _data array */ 	  A[i]= 255-A[i]; // inverse color 	}}}   return 0; }       int PlotPoint(complex double z, unsigned char A[]){  	   unsigned int ix = (creal(z)-ZxMin)/PixelWidth;   unsigned int iy = (ZyMax - cimag(z))/PixelHeight;   unsigned int i = Give_i(ix,iy); /* index of _data array */ 	 	   A[i]= 255-A[i]; // Mark point with inveres color 	 	   return 0; 	 }   int DrawForwardOrbit(complex double z, unsigned long long int iMax,  unsigned char A[] ) {      unsigned long long int i; /* nr of point of critical orbit */        PlotBigPoint(z, A);      /* forward orbit of critical point  */   for (i=1;i<iMax ; ++i)     {       z  = F(z,C);       if (cabs2(z - zp1p) > 2.0) {return 1;} // escaping       PlotBigPoint(z, A);     }                return 0;   }        // *********************************************************************************************** // ********************** edge detection usung Sobel filter *************************************** // ***************************************************************************************************  // from Source to Destination int ComputeBoundaries(unsigned char S[], unsigned char D[]) {     unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */   unsigned int i; /* index of 1D array  */   /* sobel filter */   unsigned char G, Gh, Gv;    // boundaries are in D  array ( global var )     // clear D array   memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);     // printf(" find boundaries in S array using  Sobel filter\n");    #pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)   for(iY=1;iY<iyMax-1;++iY){      for(iX=1;iX<ixMax-1;++iX){        Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];       Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];       G = sqrt(Gh*Gh + Gv*Gv);       i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */       if (G==0) {D[i]=255;} /* background */       else {D[i]=0;}  /* boundary */     }   }           return 0; }    // copy from Source to Destination int CopyBoundaries(unsigned char S[],  unsigned char D[]) {     unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */   unsigned int i; /* index of 1D array  */       //printf("copy boundaries from S array to D array \n");   for(iY=1;iY<iyMax-1;++iY)     for(iX=1;iX<ixMax-1;++iX)       {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}         return 0; }                 // ******************************************************************************************* // ********************************** save A array to pgm file **************************** // *********************************************************************************************  int SaveArray2PGMFile (unsigned char A[], int a, int b,  int c, char *comment) {    FILE *fp;   const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */   char name[100];		/* name of file */   snprintf (name, sizeof name, "%d_%d_%d", a, b, c );	/*  */   char *filename = strcat (name, ".pgm");   char long_comment[200];   sprintf (long_comment, "fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  %s", comment);        // save image array to the pgm file    fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode    fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file   size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp);	// write whole array with image data bytes to the file in one step    fclose (fp);    // info    if ( rSize == iSize)    	{   		printf ("File %s saved ", filename);   		if (long_comment == NULL || strlen (long_comment) == 0)     		printf ("\n");   			else { printf (". Comment = %s \n", long_comment); }   	}   	else {printf("wrote %zu elements out of %llu requested\n", rSize,  iSize);}    return 0; }     int PrintCInfo () {    printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse   // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"    printf ("__STDC__ = %d\n", __STDC__);   printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);   printf ("c dialect = ");   switch (__STDC_VERSION__)     {				// the format YYYYMM      case 199409L:       printf ("C94\n");       break;     case 199901L:       printf ("C99\n");       break;     case 201112L:       printf ("C11\n");       break;     case 201710L:       printf ("C18\n");       break;       //default : /* Optional */      }    return 0; }   int PrintProgramInfo () {     // display info messages   printf ("Numerical approximation of Julia set for F(z,C) =  z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4) \n");   //printf ("iPeriodParent = %d \n", iPeriodParent);   //printf ("iPeriodOfChild  = %d \n", iPeriodChild);      printf ("parameter C = ( %.16f ; %.16f ) \n", creal (C), cimag (C));          printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);   printf ("PixelWidth = %.16f \n", PixelWidth);   printf ("AR = %.16f = %f *PixelWidth\n", AR, AR / PixelWidth);     printf("pixel counters\n");   printf ("uUnknown = %llu\n", uUnknown);   printf ("uExterior = %llu\n", uExterior);   printf ("uInterior = %llu\n", uInterior);   printf ("Sum of pixels  = %llu\n", uInterior+uExterior + uUnknown);   printf ("all pixels of the array = iSize = %llu\n", iSize);     // image corners in world coordinate   // center and radius   // center and zoom   // GradientRepetition   printf ("Maximal number of iterations = iterMax = %d \n", IterMax);   printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);   //       return 0; }    int SetPlane(complex double center, double radius, double a_ratio){    ZxMin = creal(center) - radius*a_ratio;	   ZxMax = creal(center) + radius*a_ratio;	//0.75;   ZyMin = cimag(center) - radius;	// inv   ZyMax = cimag(center) + radius;	//0.7;   return 0;  }   // ***************************************************************************** //;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; // **************************************************************************************  int setup () {    fprintf (stderr, "setup start\n");         /* 2D array ranges */    iWidth = iHeight* DisplayAspectRatio ;   iSize = iWidth * iHeight;	// size = number of points in array    // iy   iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].   //ix    ixMax = iWidth - 1;    /* 1D array ranges */   // i1Dsize = i2Dsize; // 1D array with the same size as 2D array   iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].     SetPlane( center, radius,  DisplayAspectRatio );	   /* Pixel sizes */   PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate    PixelHeight = (ZyMax - ZyMin) / iyMax;   ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...    ER = 2.0; //    ER2 = ER*ER;   AR = 18.5*PixelWidth*iWidth/2000.0 ; // adjust first number    AR2 = AR * AR;   //AR12 = AR/2.0;         	            /* create dynamic 1D arrays for colors ( shades of gray ) */   data = malloc (iSize * sizeof (unsigned char));    edge = malloc (iSize * sizeof (unsigned char));   if (data == NULL || edge == NULL)     {       fprintf (stderr, " Could not allocate memory");       return 1;     }            fprintf (stderr, " end of setup \n");    return 0;  }				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;     int end () {     fprintf (stderr, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation   free (data);   free(edge);     PrintProgramInfo ();   PrintCInfo ();   return 0;  }  // ******************************************************************************************************************** /* -----------------------------------------  main   -------------------------------------------------------------*/ // ********************************************************************************************************************  int main () {   setup ();     DrawFatouImage (data, IterMax);	// first find Fatou   SaveArray2PGMFile (data, iWidth, IterMax, 0, "Fatou, name = iWidth_IterMax_n");      ComputeBoundaries(data,edge);   SaveArray2PGMFile (edge, iWidth, IterMax, 1, "Boundaries of Fatou; name = iWidth_IterMax_n");       CopyBoundaries(edge,data);   SaveArray2PGMFile (data, iWidth, IterMax, 2, "Fatou with boundaries; name = iWidth_IterMax_n");       //MarkAttractors(data);   MarkTraps(data);   SaveArray2PGMFile (data, iWidth, IterMax, 4, "Fatou with boundaries and traps; name = iWidth_IterMax_n");    	   DrawForwardOrbit(zc1p, 10000, data);   SaveArray2PGMFile (data, iWidth, IterMax, 5, "Fatou with boundaries and traps, critical orbit; name = iWidth_IterMax_n");     	    end ();    return 0; } 

text output

   time ./a.out > a.txt  OPENMP DISPLAY ENVIRONMENT BEGIN   _OPENMP = '201511'   OMP_DYNAMIC = 'FALSE'   OMP_NESTED = 'FALSE'   OMP_NUM_THREADS = '8'   OMP_SCHEDULE = 'DYNAMIC'   OMP_PROC_BIND = 'FALSE'   OMP_PLACES = ''   OMP_STACKSIZE = '0'   OMP_WAIT_POLICY = 'PASSIVE'   OMP_THREAD_LIMIT = '4294967295'   OMP_MAX_ACTIVE_LEVELS = '2147483647'   OMP_CANCELLATION = 'FALSE'   OMP_DEFAULT_DEVICE = '0'   OMP_MAX_TASK_PRIORITY = '0'   OMP_DISPLAY_AFFINITY = 'FALSE'   OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OPENMP DISPLAY ENVIRONMENT END   compute Fatou image  File 13000_100000_0.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  Fatou, name = iWidth_IterMax_n  File 13000_100000_1.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  Boundaries of Fatou; name = iWidth_IterMax_n  File 13000_100000_2.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  Fatou with boundaries; name = iWidth_IterMax_n  File 13000_100000_4.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  Fatou with boundaries and traps; name = iWidth_IterMax_n  File 13000_100000_5.pgm saved . Comment = fc(z)=z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  Fatou with boundaries and traps, critical orbit; name = iWidth_IterMax_n  Numerical approximation of Julia set for F(z,C) =  z*(1+z)*(1+z)*(C-(2C+1)*z+(3+4*C)*z*z/4)  parameter C = ( 1.0200000000000000 ; 0.0500000000000000 )  Image Width = 3.120000 in world coordinate PixelWidth = 0.0002400184629587  AR = 0.0288622201707824 = 120.250000 *PixelWidth pixel counters uUnknown = 0 uExterior = 48939153 uInterior = 18681357 Sum of pixels  = 67620510 all pixels of the array = iSize = 130000000 Maximal number of iterations = iterMax = 100000  ratio of image  = 1.000000 ; it should be 1.000 ... gcc version: 9.3.0 __STDC__ = 1 __STDC_VERSION__ = 201710 c dialect = C18  setup start  end of setup  Mark traps 9999   allways free memory (deallocate )  to avoid memory leaks   real	0m9,304s user	0m55,658s sys	0m0,628s 


Image Magic src code

  convert 13000_100000_2.pgm -resize 2600x2000 2.png 

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.


References

  1. Semiconjugacies between the Julia sets of geometrically finite rational maps by Tomoki Kawahira

Captions

geometrically finite Julia set

Items portrayed in this file

depicts

30 September 2020

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:19, 30 September 2020Thumbnail for version as of 19:19, 30 September 20202,600 × 2,000 (165 KB)Soul windsurferUploaded own work with UploadWizard

The following page uses this file:

Metadata