File:Inductive proofs of properties of add, mult from recursive definitions.pdf
Size of this JPG preview of this PDF file: 528 × 599 pixels. Other resolutions: 211 × 240 pixels | 423 × 480 pixels | 677 × 768 pixels | 903 × 1,024 pixels | 1,805 × 2,048 pixels | 2,862 × 3,247 pixels.
Original file (2,862 × 3,247 pixels, file size: 39 KB, MIME type: application/pdf)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionInductive proofs of properties of add, mult from recursive definitions.pdf | English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; also indicates which property is used in the proof of which other one. |
Date | |
Source | Own work |
Author | Jochen Burghardt |
Other versions | File:Inductive proofs of properties of add, mult from recursive definitions svg.svg,File:Inductive proofs of properties of add, mult from recursive definitions (exercise version).pdf |
LaTeX source code |
---|
\documentclass[10pt]{article} \usepackage[pdftex]{color} \usepackage[paperwidth=485mm,paperheight=550mm]{geometry} \usepackage{amssymb} \setlength{\topmargin}{-36mm} \setlength{\textwidth}{485mm} \setlength{\textheight}{550mm} \setlength{\evensidemargin}{0cm} \setlength{\oddsidemargin}{-23mm} \setlength{\parindent}{0cm} \setlength{\parskip}{1ex} \setlength{\unitlength}{1mm} \sloppy \begin{document} \definecolor{fLb} {rgb}{0.70,0.50,0.50} % label \definecolor{fCj} {rgb}{0.00,0.00,0.00} % conjecture \definecolor{fPr} {rgb}{0.50,0.70,0.50} % proof \definecolor{fRf} {rgb}{0.50,0.50,0.70} % reference \definecolor{fEq} {rgb}{0.50,0.50,0.50} % proof equality \definecolor{fLn} {rgb}{0.99,0.00,0.00} % "uses"-line \definecolor{fLg} {rgb}{0.70,0.70,0.50} % legend \newcommand{\lm}[1]{% % lemma \begin{array}{r@{\;}ll}% #1% \end{array}% } \newcommand{\lb}[1]{% % lemma label \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Lemma #1:}}}\\[1ex]% } \newcommand{\df}[1]{% % definition label \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Definition #1:}}}\\[1ex]% } \newcommand{\cj}[2]{% % conjecture & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#1}$}}\\[1ex] \multicolumn{1}{l}{\color{fCj}\mbox{\Huge $\mathbf{=}$}} & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#2}$}}\\[1ex] } \newcommand{\pr}[1]{% % proof \multicolumn{3}{l}{% \mbox{\textcolor{fPr}{Proof by induction on $#1$:}}}\\% } \newcommand{\bc}{% % base case \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Base case:}}}\\% } \newcommand{\ic}{% % inductive case \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Inductive case:}}}\\% } \newcommand{\rs}[1]{% % reason \mbox{\textcolor{fRf}{ by #1}}% } \color{fLn} \begin{picture}(0,0)% \thicklines% \put(035,390){\vector(0,-1){50}}% 5 - 7 \put(055,260){\vector(2,-1){90}}% 7 - 11 \put(200,115){\vector(2,-1){90}}% 11 - 12 \put(150,390){\vector(-2,-1){100}}% 6 - 7 \put(310,390){\vector(0,-1){50}}% 8 - 9 \put(310,255){\vector(0,-1){50}}% 9 - 13 \put(280,390){\vector(-1,-2){87}}% 8 - 11 \put(420,390){\line(0,-1){275}}% 10 - 12 \put(420,115){\vector(-2,-1){90}}% 10 - 12 % \put(035.15,390.15){\line(0,-1){50}}% 5 - 7 \put(055.15,260.15){\line(2,-1){90}}% 7 - 11 \put(200.15,115.15){\line(2,-1){90}}% 11 - 12 \put(150.15,390.15){\line(-2,-1){100}}% 6 - 7 \put(310.15,390.15){\line(0,-1){50}}% 8 - 9 \put(310.15,255.15){\line(0,-1){50}}% 9 - 13 \put(280.15,390.15){\line(-1,-2){87}}% 8 - 11 \put(420.15,390.15){\line(0,-1){275}}% 10 - 12 \put(420.15,115.15){\line(-2,-1){90}}% 10 - 12 % \put(034.85,389.85){\line(0,-1){50}}% 5 - 7 \put(054.85,259.85){\line(2,-1){90}}% 7 - 11 \put(199.85,114.85){\line(2,-1){90}}% 11 - 12 \put(149.85,389.85){\line(-2,-1){100}}% 6 - 7 \put(309.85,389.85){\line(0,-1){50}}% 8 - 9 \put(309.85,254.85){\line(0,-1){50}}% 9 - 13 \put(279.85,389.85){\line(-1,-2){87}}% 8 - 11 \put(419.85,389.85){\line(0,-1){275}}% 10 - 12 \put(419.85,114.85){\line(-2,-1){90}}% 10 - 12 \end{picture} \color{fEq} $\begin{array}[b]{ccccccc} \rule{65mm}{0mm} & \rule{65mm}{0mm} & \rule{65mm}{0mm} & \rule{65mm}{0mm} & \rule{65mm}{0mm} & \rule{65mm}{0mm} & \rule{65mm}{0mm} \\ % \lm{ \df{1} \cj{x+0}{x} } % & & % \lm{ \df{2} \cj{x+Sy}{S(x+y)} } % & & % \lm{ \df{3} \cj{x \cdot 0}{0} } % & & % \lm{ \df{4} \cj{x \cdot Sy}{x \cdot y+x} } % \\ & & & & & & \\[50mm] % \lm{ \lb{5} \cj{0+x}{x} \pr{x} \bc & 0+0 & \\ = & 0 & \rs{Def.\ 1} \\ \ic & 0+Sx & \\ = & S(0+x) & \rs{Def.\ 2} \\ = & Sx & \rs{I.H.} \\ } % & & % \lm{ \lb{6} \cj{Sx+y}{S(x+y)} \pr{y} \bc & Sx+0 & \\ = & Sx & \rs{Def.\ 1} \\ = & S(x+0) & \rs{Def.\ 1} \\ \ic & Sx+Sy & \\ = & S(Sx+y) & \rs{Def.\ 2} \\ = & ss(x+y) & \rs{I.H.} \\ = & S(x+Sy) & \rs{Def.\ 2} \\ } % & & % \lm{ \lb{8} \cj{(x+y)+z}{x+(y+z)} \pr{z} \bc & (x+y)+0 & \\ = & x+y & \rs{Def.\ 1} \\ = & x+(y+0) & \rs{Def.\ 1} \\ \ic & (x+y)+sz & \\ = & S((x+y)+z) & \rs{Def.\ 2} \\ = & S(x+(y+z)) & \rs{I.H.} \\ = & x+S(y+z) & \rs{Def.\ 2} \\ = & x+(y+sz) & \rs{Def.\ 2} \\ } % & & % \lm{ \lb{10} \cj{0 \cdot x}{0} \pr{x} \bc & 0 \cdot 0 & \\ = & 0 & \rs{Def.\ 3} \\ \ic & 0 \cdot Sx & \\ = & 0 \cdot x+0 & \rs{Def.\ 4} \\ = & 0+0 & \rs{I.H.} \\ = & 0 & \rs{Def.\ 1} \\ } % \\ & & & & & & \\[50mm] % \lm{ \lb{7} \cj{x+y}{y+x} \pr{y} \bc & x+0 & \\ = & x & \rs{Def.\ 1} \\ = & 0+x & \rs{Lem.\ 5} \\ \ic & x+Sy & \\ = & S(x+y) & \rs{Def.\ 2} \\ = & S(y+x) & \rs{I.H.} \\ = & Sy+x & \rs{Lem.\ 6} \\ } % & & & & % \lm{ \lb{9} \cj{x \cdot (y+z)}{x \cdot y+x \cdot z} \pr{z} \bc & x \cdot (y+0) & \\ = & x \cdot y & \rs{Def.\ 1} \\ = & x \cdot y+0 & \rs{Def.\ 1} \\ = & x \cdot y+x \cdot 0 & \rs{Def.\ 3} \\ \ic & x \cdot (y+sz) & \\ = & x \cdot S(y+z) & \rs{Def.\ 2} \\ = & x \cdot (y+z)+x & \rs{Def.\ 4} \\ = & (x \cdot y+x \cdot z)+x & \rs{I.H.} \\ = & x \cdot y+(x \cdot z+x) & \rs{Lem.\ 8} \\ = & x \cdot y+x \cdot sz & \rs{Def.\ 4} \\ } % & & \\ & & & & & & \\[50mm] & & % \lm{ \lb{11} \cj{Sx \cdot y}{x \cdot y+y} \pr{y} \bc & Sx \cdot 0 & \\ = & 0 & \rs{Def.\ 3} \\ = & 0+0 & \rs{Def.\ 1} \\ = & x \cdot 0+0 & \rs{Def.\ 4} \\ \ic & Sx \cdot Sy & \\ = & Sx \cdot y+Sx & \rs{Def.\ 4} \\ = & (x \cdot y+y)+Sx & \rs{I.H.} \\ = & S((x \cdot y+y)+x)& \rs{Def.\ 2} \\ = & S(x \cdot y+(y+x))& \rs{Lem.\ 8} \\ = & S(x \cdot y+(x+y))& \rs{Lem.\ 7} \\ = & S((x \cdot y+x)+y)& \rs{Lem.\ 8} \\ = & (x \cdot y+x)+Sy & \rs{Def.\ 2} \\ = & x \cdot Sy+Sy & \rs{Def.\ 4} \\ } % & & % \lm{ \lb{13} \cj{(x \cdot y) \cdot z}{x \cdot (y \cdot z)} \pr{z} \bc & (x \cdot y) \cdot 0 & \\ = & 0 & \rs{Def.\ 3} \\ = & x \cdot 0 & \rs{Def.\ 3} \\ = & x \cdot (y \cdot 0) & \rs{Def.\ 3} \\ \ic & (x \cdot y) \cdot sz & \\ = & (x \cdot y) \cdot z+x \cdot y & \rs{Def.\ 4} \\ = & x \cdot (y \cdot z)+x \cdot y & \rs{I.H.} \\ = & x \cdot (y \cdot z+y) & \rs{Lem.\ 9} \\ = & x \cdot (y \cdot sz) & \rs{Def.\ 4} \\ } % && \\ & & & & & & \\[50mm] \color{fLg} \begin{tabular}{ll|} \hline \multicolumn{2}{l|}{\bf Legend:} \\ $S(x)$ & Successor of $x$ \\ Def. & Definition \\ Lem. & Lemma \\ I.H. & Induction Hypothesis \\ \multicolumn{2}{l|}{\bf Binding Priorities:} \\ %\multicolumn{2}{l}{$S$ , $ \cdot $ , $+$} \\ \multicolumn{2}{l|}{$Sx \cdot y+z$ denotes $((S(x)) \cdot y)+z$} \\ \multicolumn{2}{l|}{\bf Used Induction Scheme:} \\ If & $P(0)$ \\ and & $P(x)$ always implies $P(Sx)$, \\ then & always $P(x)$. \\ &\\ \multicolumn{2}{l|}{Red arrow: use of lemma} \\ \multicolumn{2}{l|}{Definition-uses omitted} \\ \end{tabular} & & & & % \lm{ \lb{12} \cj{x \cdot y}{y \cdot x} \pr{y} \bc & x \cdot 0 & \\ = & 0 & \rs{Def.\ 3} \\ = & 0 \cdot x & \rs{Lem.\ 10} \\ \ic & x \cdot Sy & \\ = & x \cdot y+x & \rs{Def.\ 4} \\ = & y \cdot x+x & \rs{I.H.} \\ = & Sy \cdot x & \rs{Lem.\ 11} \\ } % & & \\ \rule{0cm}{0cm} \\ \end{array}$ \end{document} |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
some value
24 May 2013
application/pdf
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:11, 7 November 2013 | 2,862 × 3,247 (39 KB) | Jochen Burghardt | User created page with UploadWizard |
File usage
No pages on the English Wikipedia use this file (pages on other projects are not listed).
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Software used | TeX |
---|---|
Conversion program | pdfTeX-1.40.3 |
Encrypted | no |
Page size | 1374.8 x 1559.06 pts |
Version of PDF format | 1.4 |
Retrieved from "https://en.wikipedia.org/wiki/File:Inductive_proofs_of_properties_of_add,_mult_from_recursive_definitions.pdf"