File:Inductive proofs of properties of add, mult from recursive definitions.pdf

Original file (2,862 × 3,247 pixels, file size: 39 KB, MIME type: application/pdf)

Summary

Description
English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; also indicates which property is used in the proof of which other one.
Date
Source Own work
Author Jochen Burghardt
Other versions File:Inductive proofs of properties of add, mult from recursive definitions svg.svg,File:Inductive proofs of properties of add, mult from recursive definitions (exercise version).pdf
LaTeX source code
 \documentclass[10pt]{article}  \usepackage[pdftex]{color}  \usepackage[paperwidth=485mm,paperheight=550mm]{geometry}  \usepackage{amssymb}  \setlength{\topmargin}{-36mm}  \setlength{\textwidth}{485mm}  \setlength{\textheight}{550mm}  \setlength{\evensidemargin}{0cm}  \setlength{\oddsidemargin}{-23mm}  \setlength{\parindent}{0cm}  \setlength{\parskip}{1ex}  \setlength{\unitlength}{1mm}  \sloppy    \begin{document}   \definecolor{fLb}      {rgb}{0.70,0.50,0.50}   % label  \definecolor{fCj}      {rgb}{0.00,0.00,0.00}   % conjecture  \definecolor{fPr}      {rgb}{0.50,0.70,0.50}   % proof  \definecolor{fRf}      {rgb}{0.50,0.50,0.70}   % reference  \definecolor{fEq}      {rgb}{0.50,0.50,0.50}   % proof equality  \definecolor{fLn}      {rgb}{0.99,0.00,0.00}   % "uses"-line  \definecolor{fLg}      {rgb}{0.70,0.70,0.50}   % legend    \newcommand{\lm}[1]{%                                  % lemma         \begin{array}{r@{\;}ll}%         #1%         \end{array}%  }   \newcommand{\lb}[1]{%                                  % lemma label         \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Lemma #1:}}}\\[1ex]%  }   \newcommand{\df}[1]{%                                  % definition label         \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Definition #1:}}}\\[1ex]%  }   \newcommand{\cj}[2]{%                                  % conjecture         & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#1}$}}\\[1ex]         \multicolumn{1}{l}{\color{fCj}\mbox{\Huge $\mathbf{=}$}}         & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#2}$}}\\[1ex]  }   \newcommand{\pr}[1]{%                                  % proof         \multicolumn{3}{l}{%                 \mbox{\textcolor{fPr}{Proof by induction on $#1$:}}}\\%  }   \newcommand{\bc}{%                                     % base case         \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Base case:}}}\\%  }   \newcommand{\ic}{%                                     % inductive case         \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Inductive case:}}}\\%  }   \newcommand{\rs}[1]{%                                  % reason         \mbox{\textcolor{fRf}{ by #1}}%  }   \color{fLn}  \begin{picture}(0,0)%  \thicklines%  \put(035,390){\vector(0,-1){50}}% 5 - 7  \put(055,260){\vector(2,-1){90}}% 7 - 11  \put(200,115){\vector(2,-1){90}}% 11 - 12  \put(150,390){\vector(-2,-1){100}}% 6 - 7  \put(310,390){\vector(0,-1){50}}% 8 - 9  \put(310,255){\vector(0,-1){50}}% 9 - 13  \put(280,390){\vector(-1,-2){87}}% 8 - 11  \put(420,390){\line(0,-1){275}}% 10 - 12  \put(420,115){\vector(-2,-1){90}}% 10 - 12  %  \put(035.15,390.15){\line(0,-1){50}}% 5 - 7  \put(055.15,260.15){\line(2,-1){90}}% 7 - 11  \put(200.15,115.15){\line(2,-1){90}}% 11 - 12  \put(150.15,390.15){\line(-2,-1){100}}% 6 - 7  \put(310.15,390.15){\line(0,-1){50}}% 8 - 9  \put(310.15,255.15){\line(0,-1){50}}% 9 - 13  \put(280.15,390.15){\line(-1,-2){87}}% 8 - 11  \put(420.15,390.15){\line(0,-1){275}}% 10 - 12  \put(420.15,115.15){\line(-2,-1){90}}% 10 - 12  %  \put(034.85,389.85){\line(0,-1){50}}% 5 - 7  \put(054.85,259.85){\line(2,-1){90}}% 7 - 11  \put(199.85,114.85){\line(2,-1){90}}% 11 - 12  \put(149.85,389.85){\line(-2,-1){100}}% 6 - 7  \put(309.85,389.85){\line(0,-1){50}}% 8 - 9  \put(309.85,254.85){\line(0,-1){50}}% 9 - 13  \put(279.85,389.85){\line(-1,-2){87}}% 8 - 11  \put(419.85,389.85){\line(0,-1){275}}% 10 - 12  \put(419.85,114.85){\line(-2,-1){90}}% 10 - 12  \end{picture}  \color{fEq}  $\begin{array}[b]{ccccccc}    \rule{65mm}{0mm}  & \rule{65mm}{0mm}  & \rule{65mm}{0mm}  & \rule{65mm}{0mm}  & \rule{65mm}{0mm}  & \rule{65mm}{0mm}  & \rule{65mm}{0mm} \\  %  \lm{  \df{1}  \cj{x+0}{x}  }  %  &  &  %  \lm{  \df{2}  \cj{x+Sy}{S(x+y)}  }  %  &  &  %  \lm{  \df{3}  \cj{x \cdot 0}{0}  }  %  &  &  %  \lm{  \df{4}  \cj{x \cdot Sy}{x \cdot y+x}  }  %  \\  &  &  &  &  &  &  \\[50mm]  %  \lm{  \lb{5}  \cj{0+x}{x}  \pr{x}  \bc    & 0+0                &                       \\  = & 0          & \rs{Def.\ 1}  \\  \ic    & 0+Sx       &                       \\  = & S(0+x)     & \rs{Def.\ 2}  \\  = & Sx         & \rs{I.H.}     \\  }  %  &  &  %  \lm{  \lb{6}  \cj{Sx+y}{S(x+y)}  \pr{y}  \bc    & Sx+0       &                       \\  = & Sx         & \rs{Def.\ 1}  \\  = & S(x+0)     & \rs{Def.\ 1}  \\  \ic    & Sx+Sy      &                       \\  = & S(Sx+y)    & \rs{Def.\ 2}  \\  = & ss(x+y)    & \rs{I.H.}     \\  = & S(x+Sy)    & \rs{Def.\ 2}  \\  }  %  &  &  %  \lm{  \lb{8}  \cj{(x+y)+z}{x+(y+z)}  \pr{z}  \bc    & (x+y)+0    &                       \\  = & x+y                & \rs{Def.\ 1}  \\  = & x+(y+0)    & \rs{Def.\ 1}  \\  \ic    & (x+y)+sz   &                       \\  = & S((x+y)+z) & \rs{Def.\ 2}  \\  = & S(x+(y+z)) & \rs{I.H.}     \\  = & x+S(y+z)   & \rs{Def.\ 2}  \\  = & x+(y+sz)   & \rs{Def.\ 2}  \\  }  %  &  &  %  \lm{  \lb{10}  \cj{0 \cdot x}{0}  \pr{x}  \bc    & 0 \cdot 0          &                       \\  = & 0          & \rs{Def.\ 3}  \\  \ic    & 0 \cdot Sx &                       \\  = & 0 \cdot x+0        & \rs{Def.\ 4}  \\  = & 0+0                & \rs{I.H.}     \\  = & 0          & \rs{Def.\ 1}  \\  }  %  \\  &  &  &  &  &  &  \\[50mm]  %  \lm{  \lb{7}  \cj{x+y}{y+x}  \pr{y}  \bc    & x+0                &                       \\  = & x          & \rs{Def.\ 1}  \\  = & 0+x                & \rs{Lem.\ 5}  \\  \ic    & x+Sy       &                       \\  = & S(x+y)     & \rs{Def.\ 2}  \\  = & S(y+x)     & \rs{I.H.}     \\  = & Sy+x       & \rs{Lem.\ 6}  \\  }  %  &  &  &  &  %  \lm{  \lb{9}  \cj{x \cdot (y+z)}{x \cdot y+x \cdot z}  \pr{z}  \bc    & x \cdot (y+0)      &                       \\  = & x \cdot y          & \rs{Def.\ 1}  \\  = & x \cdot y+0        & \rs{Def.\ 1}  \\  = & x \cdot y+x \cdot 0        & \rs{Def.\ 3}  \\  \ic    & x \cdot (y+sz)     &                       \\  = & x \cdot S(y+z)     & \rs{Def.\ 2}  \\  = & x \cdot (y+z)+x    & \rs{Def.\ 4}  \\  = & (x \cdot y+x \cdot z)+x    & \rs{I.H.}     \\  = & x \cdot y+(x \cdot z+x)    & \rs{Lem.\ 8}  \\  = & x \cdot y+x \cdot sz       & \rs{Def.\ 4}  \\  }  %  &  &  \\  &  &  &  &  &  &  \\[50mm]  &  &  %  \lm{  \lb{11}  \cj{Sx \cdot y}{x \cdot y+y}  \pr{y}  \bc    & Sx \cdot 0 &                       \\  = & 0          & \rs{Def.\ 3}  \\  = & 0+0                & \rs{Def.\ 1}  \\  = & x \cdot 0+0        & \rs{Def.\ 4}  \\  \ic    & Sx \cdot Sy        &                       \\  = & Sx \cdot y+Sx      & \rs{Def.\ 4}  \\  = & (x \cdot y+y)+Sx   & \rs{I.H.}     \\  = & S((x \cdot y+y)+x)& \rs{Def.\ 2}   \\  = & S(x \cdot y+(y+x))& \rs{Lem.\ 8}   \\  = & S(x \cdot y+(x+y))& \rs{Lem.\ 7}   \\  = & S((x \cdot y+x)+y)& \rs{Lem.\ 8}   \\  = & (x \cdot y+x)+Sy   & \rs{Def.\ 2}  \\  = & x \cdot Sy+Sy      & \rs{Def.\ 4}  \\  }  %  &  &  %  \lm{  \lb{13}  \cj{(x \cdot y) \cdot z}{x \cdot (y \cdot z)}  \pr{z}  \bc    & (x \cdot y) \cdot 0        &                       \\  = & 0          & \rs{Def.\ 3}  \\  = & x \cdot 0          & \rs{Def.\ 3}  \\  = & x \cdot (y \cdot 0)        & \rs{Def.\ 3}  \\  \ic    & (x \cdot y) \cdot sz       &                       \\  = & (x \cdot y) \cdot z+x \cdot y      & \rs{Def.\ 4}  \\  = & x \cdot (y \cdot z)+x \cdot y      & \rs{I.H.}     \\  = & x \cdot (y \cdot z+y)      & \rs{Lem.\ 9}  \\  = & x \cdot (y \cdot sz)       & \rs{Def.\ 4}  \\  }  %  &&  \\  &  &  &  &  &  &  \\[50mm]  \color{fLg}  \begin{tabular}{ll|}  \hline  \multicolumn{2}{l|}{\bf Legend:}       \\  $S(x)$ & Successor of $x$      \\  Def. & Definition      \\  Lem. & Lemma   \\  I.H. & Induction Hypothesis    \\  \multicolumn{2}{l|}{\bf Binding Priorities:}   \\  %\multicolumn{2}{l}{$S$ , $ \cdot $ , $+$}     \\  \multicolumn{2}{l|}{$Sx \cdot y+z$ denotes $((S(x)) \cdot y)+z$}       \\  \multicolumn{2}{l|}{\bf Used Induction Scheme:}        \\  If & $P(0)$    \\  and & $P(x)$ always implies $P(Sx)$,   \\  then & always $P(x)$.  \\  &\\  \multicolumn{2}{l|}{Red arrow: use of lemma}   \\  \multicolumn{2}{l|}{Definition-uses omitted}   \\  \end{tabular}  &  &  &  &  %  \lm{  \lb{12}  \cj{x \cdot y}{y \cdot x}  \pr{y}  \bc    & x \cdot 0          &                       \\  = & 0          & \rs{Def.\ 3}  \\  = & 0 \cdot x          & \rs{Lem.\ 10} \\  \ic    & x \cdot Sy &                       \\  = & x \cdot y+x        & \rs{Def.\ 4}  \\  = & y \cdot x+x        & \rs{I.H.}     \\  = & Sy \cdot x & \rs{Lem.\ 11} \\  }  %  &  &  \\  \rule{0cm}{0cm}  \\  \end{array}$    \end{document} 

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

24 May 2013

application/pdf

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:11, 7 November 2013Thumbnail for version as of 18:11, 7 November 20132,862 × 3,247 (39 KB)Jochen BurghardtUser created page with UploadWizard
No pages on the English Wikipedia use this file (pages on other projects are not listed).

Metadata