In probability theory , Kolmogorov's inequality is a so-called "maximal inequality " that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound.
Statement of the inequality [ edit ] Let X 1 , ..., X n : Ω → R be independent random variables defined on a common probability space (Ω, F , Pr), with expected value E[X k ] = 0 and variance Var[X k ] < +∞ for k = 1, ..., n . Then, for each λ > 0,
Pr ( max 1 ≤ k ≤ n | S k | ≥ λ ) ≤ 1 λ 2 Var [ S n ] ≡ 1 λ 2 ∑ k = 1 n Var [ X k ] = 1 λ 2 ∑ k = 1 n E [ X k 2 ] , {\displaystyle \Pr \left(\max _{1\leq k\leq n}|S_{k}|\geq \lambda \right)\leq {\frac {1}{\lambda ^{2}}}\operatorname {Var} [S_{n}]\equiv {\frac {1}{\lambda ^{2}}}\sum _{k=1}^{n}\operatorname {Var} [X_{k}]={\frac {1}{\lambda ^{2}}}\sum _{k=1}^{n}{\text{E}}[X_{k}^{2}],} where S k = X 1 + ... + X k .
The convenience of this result is that we can bound the worst case deviation of a random walk at any point of time using its value at the end of time interval.
The following argument employs discrete martingales . As argued in the discussion of Doob's martingale inequality , the sequence S 1 , S 2 , … , S n {\displaystyle S_{1},S_{2},\dots ,S_{n}} is a martingale. Define ( Z i ) i = 0 n {\displaystyle (Z_{i})_{i=0}^{n}} as follows. Let Z 0 = 0 {\displaystyle Z_{0}=0} , and
Z i + 1 = { S i + 1 if max 1 ≤ j ≤ i | S j | < λ Z i otherwise {\displaystyle Z_{i+1}=\left\{{\begin{array}{ll}S_{i+1}&{\text{ if }}\displaystyle \max _{1\leq j\leq i}|S_{j}|<\lambda \\Z_{i}&{\text{ otherwise}}\end{array}}\right.} for all i {\displaystyle i} . Then ( Z i ) i = 0 n {\displaystyle (Z_{i})_{i=0}^{n}} is also a martingale.
For any martingale M i {\displaystyle M_{i}} with M 0 = 0 {\displaystyle M_{0}=0} , we have that
∑ i = 1 n E [ ( M i − M i − 1 ) 2 ] = ∑ i = 1 n E [ M i 2 − 2 M i M i − 1 + M i − 1 2 ] = ∑ i = 1 n E [ M i 2 − 2 ( M i − 1 + M i − M i − 1 ) M i − 1 + M i − 1 2 ] = ∑ i = 1 n E [ M i 2 − M i − 1 2 ] − 2 E [ M i − 1 ( M i − M i − 1 ) ] = E [ M n 2 ] − E [ M 0 2 ] = E [ M n 2 ] . {\displaystyle {\begin{aligned}\sum _{i=1}^{n}{\text{E}}[(M_{i}-M_{i-1})^{2}]&=\sum _{i=1}^{n}{\text{E}}[M_{i}^{2}-2M_{i}M_{i-1}+M_{i-1}^{2}]\\&=\sum _{i=1}^{n}{\text{E}}\left[M_{i}^{2}-2(M_{i-1}+M_{i}-M_{i-1})M_{i-1}+M_{i-1}^{2}\right]\\&=\sum _{i=1}^{n}{\text{E}}\left[M_{i}^{2}-M_{i-1}^{2}\right]-2{\text{E}}\left[M_{i-1}(M_{i}-M_{i-1})\right]\\&={\text{E}}[M_{n}^{2}]-{\text{E}}[M_{0}^{2}]={\text{E}}[M_{n}^{2}].\end{aligned}}}
Applying this result to the martingale ( S i ) i = 0 n {\displaystyle (S_{i})_{i=0}^{n}} , we have
Pr ( max 1 ≤ i ≤ n | S i | ≥ λ ) = Pr [ | Z n | ≥ λ ] ≤ 1 λ 2 E [ Z n 2 ] = 1 λ 2 ∑ i = 1 n E [ ( Z i − Z i − 1 ) 2 ] ≤ 1 λ 2 ∑ i = 1 n E [ ( S i − S i − 1 ) 2 ] = 1 λ 2 E [ S n 2 ] = 1 λ 2 Var [ S n ] {\displaystyle {\begin{aligned}{\text{Pr}}\left(\max _{1\leq i\leq n}|S_{i}|\geq \lambda \right)&={\text{Pr}}[|Z_{n}|\geq \lambda ]\\&\leq {\frac {1}{\lambda ^{2}}}{\text{E}}[Z_{n}^{2}]={\frac {1}{\lambda ^{2}}}\sum _{i=1}^{n}{\text{E}}[(Z_{i}-Z_{i-1})^{2}]\\&\leq {\frac {1}{\lambda ^{2}}}\sum _{i=1}^{n}{\text{E}}[(S_{i}-S_{i-1})^{2}]={\frac {1}{\lambda ^{2}}}{\text{E}}[S_{n}^{2}]={\frac {1}{\lambda ^{2}}}{\text{Var}}[S_{n}]\end{aligned}}}
where the first inequality follows by Chebyshev's inequality .
This inequality was generalized by Hájek and Rényi in 1955.
Billingsley, Patrick (1995). Probability and Measure . New York: John Wiley & Sons, Inc. ISBN 0-471-00710-2 . (Theorem 22.4) Feller, William (1968) [1950]. An Introduction to Probability Theory and its Applications, Vol 1 (Third ed.). New York: John Wiley & Sons, Inc. xviii+509. ISBN 0-471-25708-7 . Kahane, Jean-Pierre (1985) [1968]. Some random series of functions (Second ed.). Cambridge: Cambridge University Press. p. 29-30. This article incorporates material from Kolmogorov's inequality on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .