Voitenko compressor

The Voitenko compressor is a shaped charge adapted from its original purpose of piercing thick steel armour to the task of accelerating shock waves. It was proposed by Anatoly Emelyanovich Voitenko (Анатолий Емельянович Войтенко), a Soviet scientist, in 1964.[1][2] It slightly resembles a wind tunnel.

The Voitenko compressor initially separates a test gas from a shaped charge with a malleable steel plate. When the shaped charge detonates, most of its energy is focused on the steel plate, driving it forward and pushing the test gas ahead of it. Ames Research Center translated this idea into a self-destroying shock tube. A 30-kilogram (66 lb) shaped charge accelerated the gas in a 3-cm glass-walled tube 2 meters in length. The velocity of the resulting shock wave was a phenomenal 67 km/s (220,000 ft/s). The apparatus exposed to the detonation was, of course, completely destroyed, but not before useful data was extracted.[3][4] In a typical Voitenko compressor, a shaped charge accelerates hydrogen gas, which in turn accelerates a thin disk up to about 40 km/s.[5] A slight modification to the Voitenko compressor concept is a super-compressed detonation,[6][7] a device that uses a compressible liquid or solid fuel in the steel compression chamber instead of a traditional gas mixture.[8][9] A further extension of this technology is the explosive diamond anvil cell,[10][11][12][13] utilizing multiple opposed shaped-charge jets projected at a single steel-encapsulated fuel,[14] such as hydrogen. The fuels used in these devices, along with the secondary combustion reactions and long blast impulse, produce similar conditions to those encountered in fuel-air and thermobaric explosives.[15][16]

This method of detonation produces energies over 100 keV (~109 K temperatures), suitable not only for nuclear fusion, but other higher-order quantum reactions as well.[17][18][19][20] The UTIAS explosive-driven-implosion facility was used to produce stable, centered and focused hemispherical implosions to generate neutrons from D–D reactions. The simplest and most direct method proved to be in a predetonated stoichiometric mixture of deuterium and oxygen. The other successful method was using a miniature Voitenko-type compressor, where a plane diaphragm was driven by the implosion wave into a secondary small spherical cavity that contained pure deuterium gas at one atmosphere.[21][22] In brief, PETN solid explosive is used to form a hemispherical shell (3–6 mm thick) in a 20-cm diameter hemispherical cavity milled in a massive steel chamber. The remaining volume is filled with a stoichiometric mixture of (H2 or D2 and O2). This mixture is detonated by a very short, thin exploding wire located at the geometric center. The arrival of the detonation wave at the spherical surface instantly and simultaneously fires the explosive liner. The detonation wave in the explosive liner hits the metal cavity, reflects, and implodes on the preheated burnt gases, focuses at the center of the hemisphere (50 microseconds after the initiation of the exploding wire) and reflects, leaving behind a very small pocket (1 mm) of extremely high-temperature, high-pressure and high-density plasma.[23][24][25]

See also

[edit]

References

[edit]
  1. ^ Войтенко (Voitenko), А.Е. (1964) "Получение газовых струй большой скорости" (Obtaining high speed gas jets), Доклады Академии Наук СССР (Reports of the Academy of Sciences of the USSR), 158 : 1278–1280.
    See also:
    • Войтенко, А. Е. (1966) "Ускорение газа при его сжатии в условиях остроугольной геометрии" (Acceleration of a gas during its compression in conditions of acute angle geometry), Прикладная Механика и Техническая Физика (Applied Mechanics and Technical Physics), no. 4, 112–116.
    • Войтенко, А. Е.; Демчук, А. Ф.; Куликов, Б. И. (Voitenko, A. E.; Demchuk, A. F.; Kulikov, B. I.) (1970) "Взрывная камера" (Explosive chamber), Приборы и Техника Эксперимента (Instruments and Experimental Techniques), no. 1, p. 250 ff.
    • Войтенко, А. Е.; Маточкин, Е. П.; Федулов, А. Ф. (Voitenko, A. E.; Matochkin, E. P.; Fedulov, A. F.) (1970) "Взрывная лампа" (Explosive tube), Приборы и Техника Эксперимента (Instruments and Experimental Techniques), no. 2, p. 201–203.
    • Войтенко, А. Е.; Любимова, М. А.; Соболев, О. П.; Сынах, B. C. (Voitenko, A. E.; Lyubimova, M. A.; Sobolev, O. P.; Sinakh, V.S.) (1970) "Градиентное ускорение ударной волны и возможные применения этого эффекта" (Gradient acceleration of a shock wave and the possible applications of this effect), Институт Ядерной Физики Сибирское отделение Академии Наук СССР (Institute of Nuclear Physics, Siberian branch of the Academy of Sciences of the U.S.S.R.), no. 14–70.
  2. ^ For biographical information about Anatoly Emelyanovich Voitenko (with photograph of Voitenko), see: Encyclopedia of Modern Ukraine, ВОЙТЕ́НКО Анатолій Омелянович [in Ukrainian].
  3. ^ "The Suicidal Wind Tunnel". NASA. Retrieved March 6, 2017.
  4. ^ "Shaped Charge History". GlobalSecurity.org. 2011. Retrieved March 6, 2017.
  5. ^ "Explosive Accelerators: Voitenko Implosion Gun". islandone.org. Belfast: Island One Society. Retrieved March 6, 2017.
  6. ^ Fujiwara, Shuzo (1992). "Explosive Technique for Generation of High Dynamic Pressure" (PDF). Shock Compression Technology and Materials Science. Tokyo: KTK Scientific Publishers/Terra Scientific Publishing Company: 7–21. Retrieved 2015-04-22.
  7. ^ Liu, Zhi-Yue (2001-03-23). Overdriven detonation phenomenon and its applications to ultra-high pressure generation (PDF) (Report). Retrieved 2015-04-22.
  8. ^ Zhang, Fan; Murray, Stephen Burke; Higgins, Andrew (2005). "Super compressed detonation method and device to effect such detonation". Medicine Hat, Alberta, Canada; Montreal, Quebec, Canada: Google Patents.
  9. ^ Pentel, Jerry; Fairbanks, Gary G. (1992). "Multiple Stage Munition". Google Patents.
  10. ^ Heberlin, John M. (2006). "Enhancement of Solid Explosive Munitions Using Reflective Casings". Google Patents.
  11. ^ Mayer, Frederick J. (1988). "Materials Processing Using Chemically Driven Spherically Symmetric Implosions". Google Patents.
  12. ^ Garrett, Donald R. (1972). "Diamond Implosion Apparatus". Google Patents.
  13. ^ Altshuler, L. V.; Trunin, R. F.; Krupnikov, K. K.; Panov, N. V. (1996). "Explosive laboratory devices for shock wave compression studies" (PDF). Physics-Uspekhi (in Russian). 39 (5): 539. Bibcode:1996PhyU...39..539A. doi:10.1070/PU1996v039n05ABEH000147. ISSN 1063-7869. S2CID 250752219.
  14. ^ Giardini, A. A.; Tydings, J. E. (1962). "Diamond Synthesis: Observations On The Mechanism of Formation" (PDF). American Mineralogist. 47: 1393–1421.
  15. ^ "Going To Extremes" (PDF). llnl.gov. Lawrence Livermore National Laboratory. July–August 2004.
  16. ^ Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stephanie; Loubeyre, Paul (2007-05-29). "Achieving high-density states through shock-wave loading of precompressed samples". Proceedings of the National Academy of Sciences of the United States of America. 104 (22). National Acad Sciences: 9172–9177. Bibcode:2007PNAS..104.9172J. doi:10.1073/pnas.0608170104. PMC 1890466. PMID 17494771.
  17. ^ Winterberg, F. (2005). "Conjectured Metastable Super-Explosives formed under High Pressure for Thermonuclear Ignition". Journal of Fusion Energy. 27 (4): 250–255. arXiv:0802.3408. Bibcode:2008JFuE...27..250W. doi:10.1007/s10894-008-9143-4. S2CID 119293564.
  18. ^ Bae, Young K. (2008-07-07). "Metastable innershell molecular state (MIMS)". Physics Letters A. 372 (29): 4865–4869. arXiv:0805.0340. Bibcode:2008PhLA..372.4865B. doi:10.1016/j.physleta.2008.05.037. S2CID 118462999.
  19. ^ Danen, Wayne C.; Martin, Joe A. (1997). "Energetic Composites and Method of Providing Chemical Energy". Google Patents.
  20. ^ Adams, Christian (2006). "Explosive/Energetic Fullerenes". Google Patents.
  21. ^ Sagie, D.; Glass, I. I. (1982). "Explosive-driven Hemispherical Implosions For Generating Fusion Plasmas". dtic.mil. Defense Technical Information Center, US Dept. of Defense. Archived from the original on May 22, 2011.
  22. ^ Gsponer, Andre (2008). "Fourth Generation Nuclear Weapons: Military Effectiveness and Collateral Effects". arXiv:physics/0510071v5.
  23. ^ Glass, I. I.; Poinssot, J. C. (January 1, 1970). "Implosion-Driven Shock Tube". scribd.com. Institute for Aerospace Studies, University of Toronto. Retrieved March 6, 2017. Abstract available
  24. ^ Saito, T.; Kudian, A. K.; Glass, I. I. "Temperature Measurements of an Implosion Focus" (PDF). dtic.mil. Institute for Aerospace Studies, University of Toronto; published online by Defense Technical Information Center, US Dept. of Defense. Archived (PDF) from the original on June 4, 2011.
  25. ^ Kennedy, Jack E.; Glass, Irvine I. (1967). "Multipoint Initiated Implosions From Hemispherical Shells of Sheet Explosive" (PDF). dtic.mil. Defense Technical Information Center, US Dept. of Defense. Archived from the original (PDF) on February 11, 2017.