Desigualdad de Márkov , la enciclopedia libre

En teoría de la probabilidad, la desigualdad de Márkov proporciona una cota superior para la probabilidad de que una función no negativa de una variable aleatoria sea mayor o igual que una constante positiva. Su nombre le viene del matemático ruso Andréi Márkov.

La desigualdad de Márkov relaciona las probabilidades con la esperanza matemática y proporciona cotas útiles -aunque habitualmente poco ajustadas- para la función de distribución de una variable aleatoria.

Desigualdad de Márkov

[editar]

Desigualdad de Márkov

Si es una variable aleatoria no negativa tal que y , entonces:

donde denota la esperanza matemática.

Demostración
Caso discreto

Si es una variable aleatoria discreta con valores en , aplicando la definición de la esperanza:

.

Caso continuo Si es una variable aleatoria continua con función de densidad , aplicando la definición de la esperanza:

.

Demostración

[editar]

Para cualquier suceso A, sea IA la variable aleatoria indicatriz de A, esto es, IA = 1 si ocurre A y es 0 en el caso contrario. Entonces

Por lo tanto

Ahora, nótese que el lado izquierdo de esta desigualdad coincide con

Por lo tanto tenemos

y como a > 0, se pueden dividir ambos lados entre a.

Demostración alternativa

[editar]

Una prueba más formal, relacionada con la teoría de la medida, es la siguiente:

En la introducción de , nótese que ya que estamos considerando la variable aleatoria sólo en sus valores iguales o mayores a , y, por tanto,

con lo que al multiplicar por algo mayor a uno será igual o mayor. La segunda desigualdad viene de añadir la suma

que siempre será positiva ya que se integra algo positivo como es el valor absoluto (porque es positiva).