Epicicloide , la enciclopedia libre
La epicicloide es la curva generada por la trayectoria de un punto perteneciente a una circunferencia (generatriz) que rueda, sin deslizamiento, por el exterior de otra circunferencia (directriz). Es un tipo de ruleta cicloidal.
Ecuación
[editar]Considerando la figura podemos escribir:
(1)
(2)
con y, además, como la circunferencia rueda sin deslizamiento, los arcos l1 y l2 son iguales, i.e: . De aquí se tiene que
Sustituyendo β y γ en las ecuaciones [1] y [2] tenemos la ecuación paramétrica de la epicicloide:
Casos particulares
[editar]Cuando es un número racional, i.e., , siendo p y q números enteros, las epicicloides son curvas algebraicas.
Cuando r1=r2, i.e, obtenemos una cardioide.
Cuando r1=2r2, i.e, obtenemos una nefroide.
Ejemplos
[editar]- k=1
- k=2
- k=3
- k=4
- k=2,1=21/10
- k=3,8=19/5
- k=5,5=11/2
- k=7,2=36/5
Curvas cíclicas
[editar]La directriz es una recta d = r d < r d > r cicloide trocoide cicloide normal cicloide acortada cicloide alargada
La directriz es una circunferencia d = r d < r d > r La generatriz es exterior a al directriz epicicloide epitrocoide epicicloide normal epicicloide acortada epicicloide alargada La generatriz es interior a al directriz hipocicloide hipotrocoide hipocicloide normal hipocicloide acortada hipocicloide alargada La directriz es interior a al generatriz pericicloide peritrocoide pericicloide normal pericicloide acortada pericicloide alargada