Teorema del centroide de Pappus , la enciclopedia libre
Teorema del centroide de Pappus, también conocido como teorema de Guldin, teorema de Pappus-Guldin o teorema de Pappus, es el nombre de dos teoremas que relacionan superficies y volúmenes de sólidos de revolución con sus respectivos centroides.
El áreaA, de una superficie de revolución generada mediante la rotación de una curvaplanaC alrededor de un eje externo a tal curva sobre el mismo plano, es igual a su longitud L, multiplicada por la distancia, recorrida por su centroide en una rotación completa alrededor de dicho eje
El volumen, V, de un sólido de revolución generado mediante la rotación de un área plana alrededor de un eje externo, es igual al producto del área, A, por la distancia, recorrida por su centroide en una rotación completa alrededor del eje.
Sea una curva plana definida por la función , en un intervalo cerrado donde es continua. Entonces, el área del sólido de revolución que se genera al girar la curva alrededor del eje de las es:
Sean dos funciones y continuas y definidas en el intervalo , tales que y que delimitan una región plana de área . El volumen del sólido de revolución que se genera al hacer girar esta región alrededor del eje x se calcula mediante el método de los anillos, lo que da como resultado:
aunque el área se calcula como ya se indicó al principio.
En caso de que se desee calcular el volumen del sólido de revolución alrededor de una recta que no tenga intersección con el área, de la forma aún se puede emplear este teorema a condición de que se calcule la distancia entre el centroide y dicha recta.