Intégrateur symplectique — Wikipédia

Un intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps.

Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et :

,

où l'on a noté :

le crochet de Poisson de et .

On voudrait connaître la solution formelle au système intégrable .

Le théorème de Ramis-Morales a permis de faire de gros progrès dans cette direction[1], mais on se contente souvent de l'intégrateur symplectique, qui est une approximation de la solution valable pour de petites variations de temps.

Traitement perturbatif

[modifier | modifier le code]

Souvent, H = A + ε B, où A est intégrable et B est une perturbation intégrable souvent aussi, et ε un réel très petit. Appelons L l'opérateur de Liouville de A et M l'opérateur de Liouville de B :

Alors le problème est de calculer exp{L + ε M} t qui hélas est différent de exp{L t} .(exp Mt)ε.

Le cas classique en mécanique céleste est la perturbation de Saturne par Jupiter. Mais on peut aussi bien tester la méthode sur une particule dans un puits de potentiel.

Évidemment, il y a deux possibilités : la formule de Trotter ou la formule de Campbell-Hausdorff.

Ou bien des formes raffinées de combinaison des deux adéquates.

L'idée forte est la suivante : t est petit ; faire une théorie au n-ième ordre, conduit à une erreur O(tn ε) ou plus exactement O(tn ε +t² ε²) : on a intérêt à pousser la méthode jusqu'à l'ordre n tel que :

t(n-2) = ε.

Dans certains cas, dits symétriques, on peut l'améliorer en t(n-4) = ε.

Un cas simple : l'oscillateur harmonique

[modifier | modifier le code]

On peut commencer par tester la méthode sur l'oscillateur harmonique, qui est le test usuel.

On continuera avec le pendule simple.

Pendule simple

[modifier | modifier le code]

Cette fois, en coordonnées réduites, A = p²/2 et B = 1 - cos q . Le système est intégrable exactement, via les fonctions de Jacobi, mais nous préférons prendre A = p²/2 + ε q²/2 et B = 1 - cos q - q²/2

L'opérateur A est donc celui d'un oscillateur harmonique, et B joue le rôle de perturbation, si les oscillations sont pendulaires. Dans le cas de tournoiement, le problème de la "séparatrice" ne peut se régler simplement, car l'intégrateur symplectique ne conserve pas rigoureusement l'énergie. Il vaut mieux alors se tourner vers la solution du pendule simple discret.

Autre méthode

[modifier | modifier le code]

Quand le système possède une certaine symétrie temporelle, un dernier terme correcteur permet d'atteindre le résultat à O(tn ε + t⁴ ε²). On gagne alors en précision.

Références

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]
  • Laskar et Robutel, Celestial mechanics, 80, 39-62, 2001.
  • Koseleff, Lectures notes in Comput Sci, n°673, ed Sp , 1993
  • Wisdom et Holman, Integration algorithms and classical mechanics, 1996.