ファイル:Lavaurs-12.png

元のファイル (2,000 × 2,000 ピクセル、ファイルサイズ: 356キロバイト、MIME タイプ: image/png)

概要

解説
English: Topological model of Mandelbrot set using Lavaurs algorithm up to period 12. " The quadratic minor lamination, or QML, is defined by Thurston to be the union of S 1 with all minor leaves. ... The QML is conjecturally equivalent to the Mandelbrot set; this conjecture being equivalent to that stating that the Mandelbrot set is locally connected." [1]
Français : modèle topologique de l'ensemble de Mandelbrot, utilisant l'algorithme de Lavaurs jusqu'à la période 12
Polski: Topologiczny model zbioru Mandelbrota dla okresów 1-12. Korzysta z algorytmu Lavaurs'a.
日付
原典 own code based on the Lisp code by R Berenguel
作者 Adam majewski

compare with

Programs :

ライセンス

この作品の著作権者である私は、この作品を以下のライセンスで提供します。
w:ja:クリエイティブ・コモンズ
表示 継承
このファイルはクリエイティブ・コモンズ 表示-継承 3.0 非移植ライセンスのもとに利用を許諾されています。
あなたは以下の条件に従う場合に限り、自由に
  • 共有 – 本作品を複製、頒布、展示、実演できます。
  • 再構成 – 二次的著作物を作成できます。
あなたの従うべき条件は以下の通りです。
  • 表示 – あなたは適切なクレジットを表示し、ライセンスへのリンクを提供し、変更があったらその旨を示さなければなりません。これらは合理的であればどのような方法で行っても構いませんが、許諾者があなたやあなたの利用行為を支持していると示唆するような方法は除きます。
  • 継承 – もしあなたがこの作品をリミックスしたり、改変したり、加工した場合には、あなたはあなたの貢献部分を元の作品とこれと同一または互換性があるライセンスの下に頒布しなければなりません。
GNU head この文書は、フリーソフトウェア財団発行のGNUフリー文書利用許諾書 (GNU Free Documentation License) 1.2またはそれ以降のバージョンの規約に基づき、複製や再配布、改変が許可されます。不可変更部分、表紙、背表紙はありません。このライセンスの複製は、GNUフリー文書利用許諾書という章に含まれています。
あなたは上記のライセンスから、どれか一つ以上を選択できます。

Src code

; console program ; Lisp / Common Lisp / SBCL  ; based on :  ; http://www.mostlymaths.net/2009/08/lavaurs-algorithm.html ; lisp code by R Berenguel ; reducible angle is not angle of lower period  ; for example 9/15 = 3/5 has period 4   ; ; Rules by Lavaures : ; no arc crosses any other arc ; arc connects 2 angles with the same period : first and second ; first angle is the smallest angles not yet connected, and second angle is the next smallest angle not yet connected ; ; orthogonal circles  (x1,y1,r1) and (x2,y2,r2) ; r1^2 + r2^2 = (x2-x1)^2 +(y2-y1)^2 ; http://planetmath.org/encyclopedia/OrthogonalCircle.html ; http://classes.yale.edu/fractals/Labs/NonLinTessLab/BasicConstr3.html ;  ; example of use :  ;  ; sbcl  ; (load "ls.lisp") ; (draw-lavaurs "lavaurs-5.png" 2000 5) ; ;look for lavaurs-5.png file in your home directory ; ; Adam Majewski ; fraktal.republika.pl ; 2010.09.04- 11.17 ; ; ;;  This program is free software: you can redistribute it and/or ;;  modify it under the terms of the GNU General Public License as ;;  published by the Free Software Foundation, either version 3 of the ;;  License, or (at your option) any later version.  ;;  This program is distributed in the hope that it will be useful, ;;  but WITHOUT ANY WARRANTY; without even the implied warranty of ;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;  General Public License for more details.  ;;  You should have received a copy of the GNU General Public License ;;  along with this program. If not, see ;;  <http://www.gnu.org/licenses/>.  ; first run ;(require :asdf) ;(require :asdf-install) ;(asdf-install:install :zpng) ;(asdf-install:install :Vecto) ; http://www.xach.com/lisp/vecto/ ; you must press 2 and 0 when the program asks    ; next times load packages from disk (asdf:operate 'asdf:load-op 'vecto)     (defun doubling-map (ratio-angle) " period doubling map =  The dyadic transformation (also known as the dyadic map,   bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map " (let* ((n (numerator ratio-angle))        (d (denominator ratio-angle)))   (setq n  (mod (* n 2) d)) ; (2 x n) modulo d = doubling   (/ n d)))  (defun give-period (ratio-angle) 	"gives period of angle in turns (ratio) under doubling map" 	(let* ((n (numerator ratio-angle)) 	       (d (denominator ratio-angle)) 	       (temp n)) ; temporary numerator 	   	  (loop for p from 1 to 100 do  		(setq temp  (mod (* temp 2) d)) ; (2 x n) modulo d = doubling) 		when ( or (= temp n) (= temp 0)) return p )))  (defun give-list (period)   "Returns a list of all  angles of  given period     without angles with lower periods, which divide period.    period is integer > 0 "   (let* ((angles-list '()) 	 (den (- (expt 2 period) 1 )) ; denominator of angle = (2^period)-1 	  a ) ; angle     (when (> period 0)        (dotimes  (num (+ den 1)) ; from 0 to den 	(setq a (/ num den )) 	(when (= period (give-period a)) ;           (setq angles-list (append angles-list (list a)))))) ;        angles-list))  (defun not-crosses (new-pair old-pair) "checks if new arc ( = between new-angle-1 and new-angle-2) crosses old arc ( = between (first old-pair) and (second old-pair)). It is a part of Lavaurs algorithm. Angles are external angles mesured in turns  angle-1 < angle-2  test :  (setq old-p '(1/3 2/3)) (setq new-p '(4/15 6/15)) (not-crosses new-p old-p)  (not-crosses (list 1/7 2/7) old-p) ; t (not-crosses (list 1/7 3/7) old-p) ; nil " (let ((old-angle-1 (first old-pair)) 	(old-angle-2 (second old-pair)) 	(new-angle-1 (first new-pair)) 	(new-angle-2 (second new-pair)))  ; check the order of input angles (when (< new-angle-2 new-angle-1) (rotatef new-angle-1 new-angle-2)) (when (< old-angle-2 old-angle-1) (rotatef old-angle-1 old-angle-2)) (cond 	((< new-angle-1 new-angle-2 old-angle-1 old-angle-2) t)  	((< old-angle-1 old-angle-2 new-angle-1 new-angle-2) t)  	((< new-angle-1 old-angle-1 old-angle-2 new-angle-2) t)  	((< old-angle-1 new-angle-1 new-angle-2 old-angle-2) t) 	(t nil))))  (defun not-crosses-all (new-pair old-list) "checks if new pair of rays do not crosses any of pairs from old list test :  (setq old-pairs '((1/3 2/3) (1/7 2/7))) (not-crosses-all (list 4/15 6/15) old-pairs) ; nil " (let ((b-result T))  (loop for old-pair in old-list do (setq b-result (and b-result (not-crosses new-pair old-pair)))) b-result ))  (defun give-pairs-up-to (period) "gives list of external angles  (pairs landing on the same root point) for periods up to input period period >= 3  examples of use :  (give-pairs-old-old 3) (give-pairs-old-old 7) "  (let* ((pairs (list (list 1/3 2/3))) ; list for period 2  	angles-list ; temporary list 	i	 	new-first-angle 	new-second-angle)   	( loop for p from 3 to period do    		(setq angles-list (give-list p)) 		(loop for j from  0 to (/ (- (length angles-list) 1) 2)  do     			(setq new-first-angle (pop angles-list)) ; pop removes angle from list 			; find second ( conjugate) angle 			(setq i 0) 			(loop  do ;for i from 0 to (- (length angles-list) 1) do  ; first = nth 0   		 				(setq new-second-angle (nth i angles-list)) ; nth do not removes angle from list 				(setq i (+ i 1))    			until (not-crosses-all (list new-first-angle new-second-angle) pairs)) 		(setq angles-list (remove new-second-angle angles-list)) 	(push (list new-first-angle new-second-angle)  pairs))) ; save new pair to pairs list  (reverse pairs)))  ; it should be the same as number of components ;(loop for p from 3 to 10 do (print (length (give-pairs p)))) ;3  ;6  ;15  ;27  ;63  ;120  ;252  ;495   ;  (defun give-pairs (period-max) "gives list of external angles  (pairs landing on the same root point) for period = pariod-max period >= 2  examples of use :  (give-pairs 3) (give-pairs 7) ;  (time (give-pairs 16)) (compile 'give-pairs)  "  (let* ((pairs (list (list 1/3 2/3))) ; list for period 2  	angles-list ; temporary list 	(previous-list pairs) ; list for "previous period" = (period -1) 	i	 	new-first-angle 	new-second-angle)   	( loop for period from 3 to period-max do    		(setq angles-list (give-list period)) ; find all angles for given period 		(setq previous-list pairs) ; update previous list 		; match pairs of angles  		(loop for j from  0 to (/ (- (length angles-list) 1) 2)  do     			(setq new-first-angle (pop angles-list)) ; pop removes angle from list 			; find second ( conjugate) angle 			(setq i 0) 			(loop  do ;for i from 0 to (- (length angles-list) 1) do  ; first = nth 0   		 				(setq new-second-angle (nth i angles-list)) ; nth do not removes angle from list 				(setq i (+ i 1))    			until (not-crosses-all (list new-first-angle new-second-angle) pairs)) 			(setq angles-list (remove new-second-angle angles-list)) 			(push (list new-first-angle new-second-angle)  pairs))); save new pair to pairs list 		 	  	(setq pairs (set-difference pairs previous-list  :test 'equal))	; remove previous angles 	(reverse pairs)))  ; --------------------------------------  drawing code ------------------------------------------------  (defun ttr (turn)            " Turns to Radians" (* turn  (* 2 pi) ))  ; circle-list angle-list (defun give-arc-list (circle-list angle-list)   "   Copyright 2009 Rubén Berenguel   ruben /at/ maia /dot/ ub /dot/ es    Find the ortogonal circle to the main circle, given the angles in   it.    Input :    R: radius of the main circle    angle1, angle2 :  angles of main circles (in turns)   (a, b) , (ba, bb) : points of main circle and new ortogonal circle   Output is a list for vecto:arc procedure   thru draw-arc procedure    http://classes.yale.edu/fractals/Labs/NonLinTessLab/BasicConstr3.html   "    (let* ((x0 (first circle-list)) 	 (y0 (second circle-list)) 	 (r0 (third circle-list)) 	 (alpha (ttr ( first angle-list))) ; convert units from turns to radians 	 (balpha (ttr (second angle-list))) 	 (gamma (+ alpha (/ (- balpha alpha) 2))) ; angle between alpha and balpha          (ca (cos alpha)) 	 (cg (cos gamma)) 	 (sa (sin alpha)) 	 (sg (sin gamma)) 	 (temp (/ r0 (+ (* ca cg) (* sa sg))))          ; first common point  	 (a (+ x0 (* r0 ca))) ; a = x0 + r0 * cos(alpha) 	 (b (+ y0 (* r0 sa))) ; b = y0 + r0 * sin(alpha) 	 ; center of ortogonal circle 	 (x (+ x0 (* temp cg))) 	 (y (+ y0 (* temp sg))) 	 ; center of middle circle  	 (xma (- x a)) 	 (ymb (- y b)) 	 ; radius of ortogonal circle 	 (r (sqrt (+ (* xma xma) (* ymb ymb)))) 	 ; angle of point (a,b) measured in new circle units 	 (phi  (atan r0 r))) 	 ; result 	 (list 	x y r  	  	(+ pi gamma phi)  ; new balpha            	(- (+ pi gamma) phi) ; new alpha 	  	a b))) ; point (a,b)  (defun draw-arc (circle-list angle-list) " computes otogonal circle   using give-arc-list   and draws arc using vecto:arcn procedure  vecto:arcn x y radius angle1 angle2 "  (let* ((arc-list (give-arc-list circle-list angle-list))) (vecto:move-to ( sixth arc-list) (seventh arc-list)) ; beginning of arc is point (a,b) (vecto:arcn 	( first arc-list)  ; x 	(second arc-list)  ; y 	(third arc-list)   ; radius 	(fourth arc-list)  ; angle1  	(fifth arc-list))) ; angle2   (vecto:stroke))  (defun draw-arcs (circle-list angles-list) "draws arc from angles-list using draw-arc procedure" (loop for angles in angles-list do (draw-arc circle-list angles)))  ; example of use : (draw-lavaurs "a.png" 800 2)  (defun draw-lavaurs (file side period) "computes   and draws Lavaurs model of Mandelbrot set.  "    (vecto:with-canvas (:width side :height side) ; vecto 	       (vecto:set-rgb-stroke 0 0 0) ; vecto 	       (vecto:set-line-width 1) ; vecto     	      (let* (	(x0 (/ side 2))                         (y0 x0)  ;   			(r0 (- x0 50)) ; leave place for titles 			(main-circle-list (list x0 y0 r0)) 			arc-list)  		; main circle 	 		 (vecto:centered-circle-path x0 y0 r0 ) 		  		; arcs ( chords)		 		(setq arc-list (give-pairs-up-to period)) ; compute 		(draw-arcs main-circle-list arc-list) ; draw	 		 		(vecto:stroke)) ; before save ( vecto procedure) 		 	       (print (vecto:save-png file)))) ; save image  ;----------global var ----------------------   (defparameter *period* 4 " maximal period. It is an integer >= 2 ")  (defparameter *size* 800 " size of image in pixels. It is an integer >= 0 ")   (defparameter *file-name*   (make-pathname     :name (concatenate 'string "lavaurs-" (write-to-string *period*))    :type "png")   "name (or pathname) of png file ")    ;======================= run =====================================================================  (draw-lavaurs *file-name* *size* *period*) 

References

  1. Rational maps represented by both rabbit and aeroplane matings by Freddie R. Exall

キャプション

このファイルの内容を1行で記述してください

このファイルに描写されている項目

題材

7 11 2010

ファイルの履歴

過去の版のファイルを表示するには、その版の日時をクリックしてください。

日付と時刻サムネイル寸法利用者コメント
現在の版2023年8月3日 (木) 17:582023年8月3日 (木) 17:58時点における版のサムネイル2,000 × 2,000 (356キロバイト)Obscure2020Optimized with OxiPNG and ZopfliPNG.
2010年11月7日 (日) 12:152010年11月7日 (日) 12:15時点における版のサムネイル2,000 × 2,000 (916キロバイト)Soul windsurfer{{Information |Description={{en|1=Topological model of Mandelbrot set using Lavaurs algorith up to period 12}} |Source={{own}} |Author=Adam majewski |Date=2010-11-07 |Permission= |other_versions= }}

以下のページがこのファイルを使用しています:

グローバルなファイル使用状況