Epicykloida – Wikipedia, wolna encyklopedia

Epicykloidakrzywa, jaką zakreśla ustalony punkt okręgu toczącego się bez poślizgu na zewnątrz innego, nieruchomego okręgu[1]. Epicykloida jest szczególnym przypadkiem epitrochoidy.

Kształt epicykloidy zależy od stosunku promieni okręgów, nieruchomego do toczącego się. Gdy promienie są równe otrzymuje się krzywą sercową, z grecka zwaną kardioidą (sercowata od gr. καρδιά – serce).

Opis matematyczny

[edytuj | edytuj kod]

Epicykloidę najłatwiej opisać równaniami parametrycznymi:

Przykłady

[edytuj | edytuj kod]

Poniższe rysunki pokazują kilka epicykloid dla różnych wartości ilorazów

  • powstawanie kardioidy i kardioida statycznie:
  • epicykloida (zwana też nefroidą) – powstawanie i krzywa statycznie:
  • epicykloida – powstawanie i krzywa statycznie:

Jeżeli stosunek jest liczbą niewymierną, otrzymuje się krzywą otwartą. Kolejne przybliżenia takiej sytuacji pokazują poniższe rysunki:

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. epicykloida, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-09-29].

Linki zewnętrzne

[edytuj | edytuj kod]