Um poliedro platônico está inscrito em uma esfera , quando todos os seus vértices tangenciam a superfície da esfera.[ 1]
Dizer que a esfera está circunscrita ao poliedro platônico é uma possibilidade para descrever o mesmo conceito.
Se d {\displaystyle d} é a medida da aresta do poliedro platônico, então é possível definir o valor do raio da esfera circunscrita ao poliedro em função de d {\displaystyle d} .
Tetraedro regular A B C D {\displaystyle ABCD} inscrito em esfera. Fixe d {\displaystyle d} como sendo a medida da aresta do tetraedro regular inscrito em uma esfera.
Seja O {\displaystyle O} o ponto central da esfera inscrita ao tetraedro. Logo, o segmento que se estende do ponto O {\displaystyle O} até um dos vértices do tetraedro será igual a medida do raio da esfera circunscrita a ele.
Sabendo que no tetraedro regular, a soma das distâncias de um ponto interior qualquer até as suas quatro faces é igual à altura do tetraedro, então vale que a soma das distâncias do ponto O {\displaystyle O} até cada uma das faces resulta no valor da altura h {\displaystyle h} do tetraedro. Logo, como cada uma dessas distâncias é igual a medida do raio r {\displaystyle r} da esfera inscrita, segue que
4 r = h {\displaystyle 4r=h} ⇒ r = h 4 . {\displaystyle \Rightarrow r={\frac {h}{4}}.}
Como h = 6 3 d {\displaystyle h={\frac {\sqrt {6}}{3}}d} , então
r = 6 3 d 4 {\displaystyle r={\frac {{\frac {\sqrt {6}}{3}}d}{4}}} ⇒ r = 6 3 ⋅ 4 d {\displaystyle \Rightarrow r={\frac {\sqrt {6}}{3\cdot 4}}d} ⇒ r = 6 12 d . {\displaystyle \Rightarrow r={\frac {\sqrt {6}}{12}}d.}
Mas observe que, R + r = h {\displaystyle R+r=h} , ou seja
R + r = h {\displaystyle R+r=h} ⇒ R + 6 12 d = 6 3 d {\displaystyle \Rightarrow R+{\frac {\sqrt {6}}{12}}d={\frac {\sqrt {6}}{3}}d} ⇒ R = 6 3 d − 6 12 d {\displaystyle \Rightarrow R={\frac {\sqrt {6}}{3}}d-{\frac {\sqrt {6}}{12}}d} ⇒ R = 4 6 12 d − 6 12 d {\displaystyle \Rightarrow R={\frac {4{\sqrt {6}}}{12}}d-{\frac {\sqrt {6}}{12}}d} ⇒ R = 3 6 12 d {\displaystyle \Rightarrow R={\frac {3{\sqrt {6}}}{12}}d} ⇒ R = 6 4 d . {\displaystyle \Rightarrow R={\frac {\sqrt {6}}{4}}d.} [ 2]
Seja d {\displaystyle d} a medida da aresta do cubo . O valor do raio R {\displaystyle R} da esfera circunscrita, será igual a metade do valor da diagonal do cubo. Logo, como a diagonal do cubo vale d 3 {\displaystyle d{\sqrt {3}}} , então R = 3 2 d . {\displaystyle R={\frac {\sqrt {3}}{2}}d.} [ 2]
Seja d {\displaystyle d} a medida da aresta do octaedro regular. A medida do raio R {\displaystyle R} da esfera circunscrita é igual a metade do valor da diagonal do octaedro. Como a diagonal do octaedro regular vale d 2 {\displaystyle d{\sqrt {2}}} , segue que R = 2 2 d . {\displaystyle R={\frac {\sqrt {2}}{2}}d.} [ 2]
Ilustração de dodecaedro regular inscrito em esfera. Fixe d {\displaystyle d} como sendo a medida da aresta de um dodecaedro regular inscrito em uma esfera. A medida do raio R {\displaystyle R} da esfera circunscrita é dada por R = 3 4 ( 1 + 5 ) d {\displaystyle R={\frac {\sqrt {3}}{4}}(1+{\sqrt {5}})d} .[ 3]
Ilustração de icosaedro regular inscrito em esfera. Defina d {\displaystyle d} como sendo o valor da medida da aresta de um icosaedro regular inscrito em uma esfera. A medida do raio R {\displaystyle R} da esfera circunscrita ao poliedro é dada por R = 1 4 ( 10 + 2 5 ) d {\displaystyle R={\frac {1}{4}}{\sqrt {(10+2{\sqrt {5}})}}d} .[ 3]
Seja d {\displaystyle d} a medida da aresta de um poliedro. A tabela seguinte agrupa os valores do raio da esfera circunscrita, além do volume de cada poliedro em função de d {\displaystyle d} .
Poliedro Raio da esfera circunscrita Volume Tetraedro 6 4 d {\displaystyle {\frac {\sqrt {6}}{4}}d} [ 4] 2 12 d 3 {\displaystyle {\frac {\sqrt {2}}{12}}d^{3}} [ 5] Cubo ou Hexaedro regular 3 2 d {\displaystyle {\frac {\sqrt {3}}{2}}d} [ 4] d 3 {\displaystyle d^{3}} [ 4] Octaedro 2 2 d {\displaystyle {\frac {\sqrt {2}}{2}}d} [ 4] 2 3 d 3 {\displaystyle {\frac {\sqrt {2}}{3}}d^{3}} [ 6] Dodecaedro 3 4 ( 1 + 5 ) d {\displaystyle {\frac {\sqrt {3}}{4}}(1+{\sqrt {5}})d} [ 3] 1 4 ( 15 + 7 5 ) d 3 {\displaystyle {\frac {1}{4}}(15+7{\sqrt {5}})d^{3}} [ 7] Icosaedro 1 4 ( 10 + 2 5 ) d {\displaystyle {\frac {1}{4}}{\sqrt {(10+2{\sqrt {5}})}}d} [ 3] 5 12 ( 3 + 5 ) d 3 {\displaystyle {\frac {5}{12}}(3+{\sqrt {5}})d^{3}} [ 8]
Para determinar a porcentagem do volume da esfera ocupado por um poliedro platônico inscrito a ela, pode-se utilizar a fórmula do volume do poliedro (que está fixado na tabela de propriedades métricas dos poliedros platônicos) e o raio da esfera circunscrita ao poliedro para calcular o volume da esfera circunscrita.
A fórmula utilizada para calcular o volume da esfera é:
V = 4 3 ⋅ π R 3 . {\displaystyle V={\frac {4}{3}}\cdot \pi R^{3}.} [ 4] Assim, o volume da esfera corresponderá a 100% do total e o volume do poliedro inscrito corresponderá à porcentagem ocupada que queremos descobrir (utilizaremos x ).
É possível relacionar os volumes por meio da regra de três . Abaixo, seguem desenvolvidas as relações para os cinco poliedros platônicos:
Para representar o volume do tetraedro, utilizaremos V 1 {\displaystyle V_{1}} , e para o volume da esfera circunscrita ao tetraedro, utilizaremos V 2 {\displaystyle V_{2}} :
V 1 = 2 12 ⋅ d 3 {\displaystyle V_{1}={\frac {\sqrt {2}}{12}}\cdot d^{3}} V 2 = 4 π ( 6 ⋅ d 4 ) 3 3 ⇒ V 2 = 4 π ( 6 6 ⋅ d 3 64 ) 3 ⇒ V 2 = 4 π ⋅ 6 6 ⋅ d 3 64 ⋅ 3 ⇒ V 2 = π 6 ⋅ d 3 8 . {\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {6}}\cdot d}{4}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {6{\sqrt {6}}\cdot d^{3}}{64}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 6{\sqrt {6}}\cdot d^{3}}{64\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {6}}\cdot d^{3}}{8}}.} Assim, o volume da esfera ( V 2 {\displaystyle V_{2}} ) representa 100% e o volume do tetraedro ( V 1 {\displaystyle V_{1}} ) será representado por x {\displaystyle x} .
Utilizando regra de três, tem-se:
V 1 V 2 = x 100 % ⇒ 100 % ⋅ V 1 = x ⋅ V 2 . {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Substituindo os valores obtidos para V 1 {\displaystyle V_{1}} e V 2 {\displaystyle V_{2}} :
100 % ⋅ V 1 = x ⋅ V 2 {\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}} ⇒ 100 % ⋅ 2 12 ⋅ d 3 = x ⋅ π 6 ⋅ d 3 8 {\displaystyle \Rightarrow 100\%\cdot {\frac {\sqrt {2}}{12}}\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {6}}\cdot d^{3}}{8}}} ⇒ 100 % 2 ⋅ d 3 12 ⋅ 8 π 6 ⋅ d 3 = x {\displaystyle \Rightarrow {\frac {100\%{\sqrt {2}}\cdot d^{3}}{12}}\cdot {\frac {8}{\pi {\sqrt {6}}\cdot d^{3}}}=x} ⇒ 8 ⋅ 100 % 2 ⋅ d 3 12 π 6 ⋅ d 3 = x {\displaystyle \Rightarrow {\frac {8\cdot 100\%{\sqrt {2}}\cdot d^{3}}{12\pi {\sqrt {6}}\cdot d^{3}}}=x} ⇒ 200 % 3 π 3 = x {\displaystyle \Rightarrow {\frac {200\%}{3\pi {\sqrt {3}}}}=x} ⇒ 200 % 3 3 π 3 ⋅ 3 = x {\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{3\pi {\sqrt {3}}\cdot {\sqrt {3}}}}=x} ⇒ 200 % 3 9 π = x . {\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{9\pi }}=x.} Utilizando π ≅ 3 , 14 {\displaystyle \pi \cong 3,14} e 3 ≅ 1 , 73 {\displaystyle {\sqrt {3}}\cong 1,73} :
200 % ⋅ 1 , 73 9 ⋅ 3 , 14 ≅ x {\displaystyle {\frac {200\%\cdot 1,73}{9\cdot 3,14}}\cong x} ⇒ 346 % 28 , 26 ≅ x {\displaystyle \Rightarrow {\frac {346\%}{28,26}}\cong x} ⇒ 12 , 24 % ≅ x . {\displaystyle \Rightarrow 12,24\%\cong x.} [ 9] Fixemos V 1 {\displaystyle V_{1}} para representar o volume do cubo e V 2 {\displaystyle V_{2}} para representar o volume da esfera circunscrita ao cubo:
V 1 = d 3 {\displaystyle V_{1}=d^{3}} V 2 = 4 π ( 3 ⋅ d 2 ) 3 3 ⇒ V 2 = 4 π ( 3 3 ⋅ d 3 8 ) 3 ⇒ V 2 = 4 π ⋅ 3 3 ⋅ d 3 8 ⋅ 3 ⇒ V 2 = π 3 ⋅ d 3 2 . {\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {3}}\cdot d}{2}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{8}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 3{\sqrt {3}}\cdot d^{3}}{8\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {3}}\cdot d^{3}}{2}}.} Logo, se V 2 {\displaystyle V_{2}} equivale a 100% do volume, então V 1 {\displaystyle V_{1}} equivale a x {\displaystyle x} por cento.
Novamente, por meio de regra de três:
V 1 V 2 = x 100 % ⇒ 100 % ⋅ V 1 = x ⋅ V 2 . {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.} Substituindo V 1 {\displaystyle V_{1}} e V 2 {\displaystyle V_{2}} :
100 % ⋅ V 1 = x ⋅ V 2 {\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}} ⇒ 100 % ⋅ d 3 = x ⋅ π 3 ⋅ d 3 2 {\displaystyle \Rightarrow 100\%\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {3}}\cdot d^{3}}{2}}} ⇒ 100 % ⋅ d 3 ⋅ 2 π 3 ⋅ d 3 = x {\displaystyle \Rightarrow 100\%\cdot d^{3}\cdot {\frac {2}{\pi {\sqrt {3}}\cdot d^{3}}}=x} ⇒ 200 % ⋅ d 3 π 3 ⋅ d 3 = x {\displaystyle \Rightarrow {\frac {200\%\cdot d^{3}}{\pi {\sqrt {3}}\cdot d^{3}}}=x} ⇒ 200 % π 3 = x {\displaystyle \Rightarrow {\frac {200\%}{\pi {\sqrt {3}}}}=x} ⇒ 200 % 3 π 3 ⋅ 3 = x {\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{\pi {\sqrt {3}}\cdot {\sqrt {3}}}}=x} ⇒ 200 % 3 3 π = x . {\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{3\pi }}=x.} Para π ≅ 3 , 14 {\displaystyle \pi \cong 3,14} e 3 ≅ 1 , 73 {\displaystyle {\sqrt {3}}\cong 1,73} , conclui-se:
200 % ⋅ 1 , 73 3 ⋅ 3 , 14 ≅ x {\displaystyle {\frac {200\%\cdot 1,73}{3\cdot 3,14}}\cong x} ⇒ 346 % 9 , 42 ≅ x {\displaystyle \Rightarrow {\frac {346\%}{9,42}}\cong x} ⇒ 36 , 73 % ≅ x . {\displaystyle \Rightarrow 36,73\%\cong x.} [ 9] Sendo o volume do octaedro representado por V 1 {\displaystyle V_{1}} e o volume da esfera circunscrita ao octaedro representado por V 2 {\displaystyle V_{2}} :
V 1 = 2 3 ⋅ d 3 {\displaystyle V_{1}={\frac {\sqrt {2}}{3}}\cdot d^{3}} V 2 = 4 π ( 2 ⋅ d 2 ) 3 3 ⇒ V 2 = 4 π ( 2 2 ⋅ d 3 8 ) 3 ⇒ V 2 = 4 π ⋅ 2 2 ⋅ d 3 8 ⋅ 3 ⇒ V 2 = π 2 ⋅ d 3 3 . {\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {2}}\cdot d}{2}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {2{\sqrt {2}}\cdot d^{3}}{8}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 2{\sqrt {2}}\cdot d^{3}}{8\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {2}}\cdot d^{3}}{3}}.} Como V 1 {\displaystyle V_{1}} representa 100% do volume, então V 2 {\displaystyle V_{2}} ocupará x {\displaystyle x} por cento do volume da esfera. Assim:
V 1 V 2 = x 100 % ⇒ 100 % ⋅ V 1 = x ⋅ V 2 . {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.} Novamente, substituindo V 1 {\displaystyle V_{1}} e V 2 {\displaystyle V_{2}} :
100 % ⋅ V 1 = x ⋅ V 2 {\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}} ⇒ 100 % ⋅ 2 3 ⋅ d 3 = x ⋅ π 2 ⋅ d 3 3 {\displaystyle \Rightarrow 100\%\cdot {\frac {\sqrt {2}}{3}}\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {2}}\cdot d^{3}}{3}}} ⇒ 100 % ⋅ 2 ⋅ d 3 3 ⋅ 3 π 2 ⋅ d 3 = x {\displaystyle \Rightarrow {\dfrac {100\%\cdot {\sqrt {2}}\cdot d^{3}}{3}}\cdot {\frac {3}{\pi {\sqrt {2}}\cdot d^{3}}}=x} ⇒ 100 % π = x . {\displaystyle \Rightarrow {\frac {100\%}{\pi }}=x.} Utilizando π ≅ 3 , 14 {\displaystyle \pi \cong 3,14} :
100 % 3 , 14 ≅ x {\displaystyle {\frac {100\%}{3,14}}\cong x} ⇒ 31 , 85 % ≅ x . {\displaystyle \Rightarrow 31,85\%\cong x.} [ 9] Agora, seja V 1 {\displaystyle V_{1}} o volume do dodecaedro e V 2 {\displaystyle V_{2}} o volume da esfera circunscrita ao dodecaedro:
V 1 = 1 4 ⋅ ( 15 + 7 5 ) ⋅ d 3 {\displaystyle V_{1}={\frac {1}{4}}\cdot (15+7{\sqrt {5}})\cdot d^{3}} V 2 = 4 π ⋅ ( 3 4 ⋅ ( 1 + 5 ) ⋅ d ) 3 3 {\displaystyle V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {\sqrt {3}}{4}}\cdot (1+{\sqrt {5}})\cdot d{\Big )}^{3}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) 3 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}^{3}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 d 2 16 + 45 ⋅ d 2 16 + 45 ⋅ d 2 16 + 15 d 2 16 ) ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 d 2 16 + 2 45 ⋅ d 2 16 + 15 d 2 16 ) ⋅ ( 3 d 4 + 15 d 4 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {2{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}d}{4}}+{\frac {{\sqrt {15}}d}{4}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 d 2 16 + 6 5 ⋅ d 2 16 + 15 d 2 16 ) ⋅ ( 3 ⋅ d 4 + 15 ⋅ d 4 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {6{\sqrt {5}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 3 ⋅ d 3 64 + 6 15 ⋅ d 3 64 + 15 3 ⋅ d 3 64 + 3 15 ⋅ d 3 64 + 6 75 ⋅ d 3 64 + 15 15 ⋅ d 3 64 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {3{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {75}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 3 3 ⋅ d 3 64 + 6 15 ⋅ d 3 64 + 15 3 ⋅ d 3 64 + 3 15 ⋅ d 3 64 + 30 3 ⋅ d 3 64 + 15 15 ⋅ d 3 64 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {3{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {30{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}} ⇒ V 2 = 4 π ⋅ ( 48 3 ⋅ d 3 64 + 24 15 ⋅ d 3 64 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {48{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {24{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}} ⇒ V 2 = π ⋅ ( 48 3 ⋅ d 3 + 24 15 ⋅ d 3 16 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {\pi \cdot {\Big (}{\frac {48{\sqrt {3}}\cdot d^{3}+24{\sqrt {15}}\cdot d^{3}}{16}}{\Big )}}{3}}} ⇒ V 2 = 48 3 ⋅ d 3 ⋅ π + 24 15 ⋅ d 3 ⋅ π 16 ⋅ 3 {\displaystyle \Rightarrow V_{2}={\dfrac {48{\sqrt {3}}\cdot d^{3}\cdot \pi +24{\sqrt {15}}\cdot d^{3}\cdot \pi }{16\cdot 3}}} ⇒ V 2 = 3 ⋅ d 3 ⋅ π + 15 ⋅ d 3 ⋅ π 2 {\displaystyle \Rightarrow V_{2}={\sqrt {3}}\cdot d^{3}\cdot \pi +{\frac {{\sqrt {15}}\cdot d^{3}\cdot \pi }{2}}} ⇒ V 2 = π ⋅ ( 3 + 15 2 ) ⋅ d 3 . {\displaystyle \Rightarrow V_{2}=\pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}.} Desse modo, V 2 {\displaystyle V_{2}} representa 100% do volume e V 1 {\displaystyle V_{1}} representa x {\displaystyle x} por cento.
V 1 V 2 = x 100 % ⇒ 100 % ⋅ V 1 = x ⋅ V 2 . {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.} Logo, com os valores obtidos para V 1 {\displaystyle V_{1}} e V 2 {\displaystyle V_{2}} :
100 % ⋅ 1 4 ⋅ ( 15 + 7 5 ) ⋅ d 3 = x ⋅ π ⋅ ( 3 + 15 2 ) ⋅ d 3 {\displaystyle 100\%\cdot {\frac {1}{4}}\cdot (15+7{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}} ⇒ ( 1500 % + 700 % 5 ) ⋅ d 3 4 = x ⋅ π ⋅ ( 3 + 15 2 ) ⋅ d 3 {\displaystyle \Rightarrow {\frac {(1500\%+700\%{\sqrt {5}})\cdot d^{3}}{4}}=x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}} ⇒ ( 1500 % + 700 % 5 ) ⋅ d 3 = 4 ⋅ x ⋅ π ⋅ ( 3 + 15 2 ) ⋅ d 3 {\displaystyle \Rightarrow (1500\%+700\%{\sqrt {5}})\cdot d^{3}=4\cdot x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}} ⇒ ( 1500 % + 700 % 5 ) ⋅ d 3 = x ⋅ π ⋅ ( 4 3 + 2 15 ) ⋅ d 3 {\displaystyle \Rightarrow (1500\%+700\%{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\Big (}4{\sqrt {3}}+2{\sqrt {15}}{\Big )}\cdot d^{3}} ⇒ ( 1500 % + 700 % 5 ) ⋅ d 3 π ⋅ ( 4 3 + 2 15 ) ⋅ d 3 = x {\displaystyle \Rightarrow {\dfrac {(1500\%+700\%{\sqrt {5}})\cdot d^{3}}{\pi \cdot {\Big (}4{\sqrt {3}}+2{\sqrt {15}}{\Big )}\cdot d^{3}}}=x} ⇒ 1500 % + 700 % 5 2 π ⋅ ( 2 3 + 15 ) = x . {\displaystyle \Rightarrow {\dfrac {1500\%+700\%{\sqrt {5}}}{2\pi \cdot {\Big (}2{\sqrt {3}}+{\sqrt {15}}{\Big )}}}=x.} Para 5 ≅ 2 , 24 {\displaystyle {\sqrt {5}}\cong 2,24} , π ≅ 3 , 14 {\displaystyle \pi \cong 3,14} , 3 ≅ 1 , 73 {\displaystyle {\sqrt {3}}\cong 1,73} e 15 ≅ 3 , 87 {\displaystyle {\sqrt {15}}\cong 3,87} , tem-se:
1500 % + 700 % ⋅ 2 , 24 2 ⋅ 3 , 14 ⋅ ( 2 ⋅ 1 , 73 + 3 , 87 ) ≅ x {\displaystyle {\dfrac {1500\%+700\%\cdot 2,24}{2\cdot 3,14\cdot {\Big (}2\cdot 1,73+3,87{\Big )}}}\cong x} ⇒ 3068 % 46 , 03 ≅ x {\displaystyle \Rightarrow {\dfrac {3068\%}{46,03}}\cong x} ⇒ 66 , 65 % ≅ x {\displaystyle \Rightarrow 66,65\%\cong x} .[ 9] Para representar o volume do icosaedro utilizaremos V 1 {\displaystyle V_{1}} e para representar o volume da esfera circunscrita ao icosaedro utilizaremos V 2 {\displaystyle V_{2}} :
V 1 = 5 12 ⋅ ( 3 + 5 ) ⋅ d 3 {\displaystyle V_{1}={\frac {5}{12}}\cdot (3+{\sqrt {5}})\cdot d^{3}} V 2 = 4 π ( 1 4 ⋅ 10 + 2 5 ⋅ d ) 3 3 {\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}^{3}}{3}}} ⇒ V 2 = 4 π ( 1 4 ⋅ 10 + 2 5 ⋅ d ) ⋅ ( 1 4 ⋅ 10 + 2 5 ⋅ d ) ⋅ ( 1 4 ⋅ 10 + 2 5 ⋅ d ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}} ⇒ V 2 = 4 π ( ( 10 + 2 5 ) ⋅ d 2 16 ⋅ d ) ⋅ ( 1 4 ⋅ 10 + 2 5 ⋅ d ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {(10+2{\sqrt {5}})\cdot d^{2}}{16}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}} ⇒ V 2 = 4 π ( 5 d 2 8 + 5 ⋅ d 2 8 ) ⋅ ( 1 4 ⋅ 10 + 2 5 ⋅ d ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {5d^{2}}{8}}+{\frac {{\sqrt {5}}\cdot d^{2}}{8}}{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}} ⇒ V 2 = 4 π ( 5 10 + 2 5 ⋅ d 3 32 + 5 ⋅ ( 10 + 2 5 ) ⋅ d 3 32 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}\cdot d^{3}}{32}}+{\frac {{\sqrt {5\cdot (10+2{\sqrt {5}})}}\cdot d^{3}}{32}}{\bigg )}}{3}}} ⇒ V 2 = π ( 5 10 + 2 5 ⋅ d 3 + 50 + 10 5 ⋅ d 3 8 ) 3 {\displaystyle \Rightarrow V_{2}={\dfrac {\pi {\bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}\cdot d^{3}+{\sqrt {50+10{\sqrt {5}}}}\cdot d^{3}}{8}}{\bigg )}}{3}}} ⇒ V 2 = π ( 5 10 + 2 5 + 50 + 10 5 ) ⋅ d 3 8 ⋅ 3 {\displaystyle \Rightarrow V_{2}={\frac {\pi {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}{8\cdot 3}}} ⇒ V 2 = π ⋅ ( 5 10 + 2 5 + 50 + 10 5 24 ) ⋅ d 3 . {\displaystyle \Rightarrow V_{2}=\pi \cdot {\Bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}}{24}}{\Bigg )}\cdot d^{3}.} Como V 2 {\displaystyle V_{2}} vale 100%, então o volume de V 1 {\displaystyle V_{1}} será de x {\displaystyle x} por cento. V 1 V 2 = x 100 % ⇒ 100 % ⋅ V 1 = x ⋅ V 2 . {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.} Ou seja, com os valores obtidos para V 1 {\displaystyle V_{1}} e V 2 {\displaystyle V_{2}} :
100 % ⋅ 5 12 ⋅ ( 3 + 5 ) ⋅ d 3 = x ⋅ π ⋅ ( 5 10 + 2 5 + 50 + 10 5 24 ) ⋅ d 3 {\displaystyle 100\%\cdot {\frac {5}{12}}\cdot (3+{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\Bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}}{24}}{\Bigg )}\cdot d^{3}} ⇒ ( 1500 % + 500 % 5 ) ⋅ d 3 12 = x ⋅ [ π ⋅ ( 5 10 + 2 5 + 50 + 10 5 ) ⋅ d 3 24 ] {\displaystyle \Rightarrow {\frac {(1500\%+500\%{\sqrt {5}})\cdot d^{3}}{12}}=x\cdot {\Bigg [}{\frac {\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}{24}}{\Bigg ]}} ⇒ [ ( 1500 % + 500 % 5 ) ⋅ d 3 12 ] ⋅ [ 24 π ⋅ ( 5 10 + 2 5 + 50 + 10 5 ) ⋅ d 3 ] = x {\displaystyle \Rightarrow {\Bigg [}{\frac {(1500\%+500\%{\sqrt {5}})\cdot d^{3}}{12}}{\Bigg ]}\cdot {\Bigg [}{\frac {24}{\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}}{\Bigg ]}=x} ⇒ 2 ⋅ ( 1500 % + 500 % 5 ) π ⋅ ( 5 10 + 2 5 + 50 + 10 5 ) = x . {\displaystyle \Rightarrow {\frac {2\cdot (1500\%+500\%{\sqrt {5}})}{\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}}}=x.} Utilizando 5 ≅ 2 , 24 {\displaystyle {\sqrt {5}}\cong 2,24} e π ≅ 3 , 14 {\displaystyle \pi \cong 3,14} :
2 ⋅ ( 1500 % + 500 % ⋅ 2 , 24 ) 3 , 14 ⋅ ( 5 10 + 2 ⋅ 2 , 24 + 50 + 10 ⋅ 2 , 24 ) ≅ x {\displaystyle {\frac {2\cdot (1500\%+500\%\cdot 2,24)}{3,14\cdot {\Big (}5{\sqrt {10+2\cdot 2,24}}+{\sqrt {50+10\cdot 2,24}}{\Big )}}}\cong x} ⇒ 5240 % 3 , 14 ⋅ ( 5 14 , 48 + 72 , 4 ) ≅ x . {\displaystyle \Rightarrow {\frac {5240\%}{3,14\cdot {\Big (}5{\sqrt {14,48}}+{\sqrt {72,4}}{\Big )}}}\cong x.} Ainda, sendo 14 , 48 ≅ 3 , 81 {\displaystyle {\sqrt {14,48}}\cong 3,81} e 72 , 4 ≅ 8 , 51 {\displaystyle {\sqrt {72,4}}\cong 8,51} : 5240 % 3 , 14 ⋅ ( 5 ⋅ 3 , 81 + 8 , 51 ) ≅ x {\displaystyle {\frac {5240\%}{3,14\cdot {\Big (}5\cdot 3,81+8,51{\Big )}}}\cong x} ⇒ 5240 % 86 , 54 ≅ x {\displaystyle \Rightarrow {\frac {5240\%}{86,54}}\cong x} ⇒ 60 , 55 % ≅ x . {\displaystyle \Rightarrow 60,55\%\cong x.} [ 9]