Тригонометрические функции — Википедия

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.
Рис. 1. Графики тригонометрических функций:  синуса,  косинуса,  тангенса,  котангенса,  секанса,  косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус ();
  • косинус ();
производные тригонометрические функции:
  • тангенс ;
  • котангенс ;
  • секанс ;
  • косеканс ;
обратные тригонометрические функции:
  • арксинус, арккосинус, арктангенс, арккотангенс, арксеканс и арккосеканс.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .

Графики тригонометрических функций показаны на рис. 1.

Способы определения

[править | править код]

Определение для любых углов

[править | править код]
Рис. 2. Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[2]. В декартовой системе координат на плоскости построим окружность единичного радиуса () с центром в начале координат . Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча (точку выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , а ординату — (рис. 2).

Рис. 3. Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице

Синусом угла называется ордината точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .

Косинусом угла называется абсцисса точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .

Тангенсом угла называется отношение ординаты точки единичной окружности к её абсциссе, причём точка не принадлежит оси ординат.

Котангенсом угла называется отношение абсциссы точки единичной окружности к её ординате, причём точка не принадлежит оси абсцисс[3].

Таким образом, определения тригонометрических функций выглядят следующим образом:

  • , ;
  • , ;
  • , .

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса , однако формулы придётся нормировать. На рис. 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в запишется длиной единичной окружности . Угол в равен, соответственно и так далее. Заметим, что угол на отличающийся от по рисунку эквивалентен , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа тригонометрическими функциями угла, радианная мера которого равна .

Определение для острых углов

[править | править код]
Рис. 4. Тригонометрические функции острого угла
Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[4]. Пусть  — прямоугольный (угол прямой), с острым углом и гипотенузой . Тогда:

  • (синусом угла называется отношение противолежащего катета к гипотенузе). Синус можно рассматривать как «коэффициент сжатия» длины отрезка при наблюдении за ним под углом, то есть насколько укорачивается проекция отрезка при его наклоне на определённый угол[5].
  • (косинусом угла называется отношение прилежащего катета к гипотенузе);
  • (тангенсом угла называется отношение противолежащего катета к прилежащему). Тангенс можно рассматривать как масштабирующий коэффициент или коэффициент сравнения: насколько противолежащий катет больше прилежащего. Если тангенс равен 1, то катеты равны. Данное свойство используется в математическом анализе в определении производной: насколько изменение единицы измерения ординаты больше изменения единицы измерения абсциссы. Если тангенс равен 1, то изменения единиц измерения равны. В геометрии тангенс является безразмерной величиной (длина противолежащего катета ∕ длина прилежащего катета, м ∕ м), но применительно к вычислению производной тангенс может иметь размерность, например, скорость тела есть путь ∕ время, то есть м ∕ с.
  • (котангенсом угла называется отношение прилежащего катета к противолежащему);
  • (секансом угла называется отношение гипотенузы к прилежащему катету) .
  • (косекансом угла называется отношение гипотенузы к противолежащему катету).

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений

[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

с дополнительными условиями: для косинуса и для синуса.

Из приведённых решений следует важный вывод для теории радиотехнических цепей: синусоидальный сигнал не искажает свою форму при прохождении по RCL-цепям, искажаются только амплитуда и фаза. Подобным свойством обладает экспонента, но она не является периодической функцией.[значимость факта?]

Определение как решений функциональных уравнений

[править | править код]

Функции косинус и синус можно определить как решения ( и соответственно) системы функциональных уравнений[6]:

при дополнительных условиях:

и при .

Определение через ряды

[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:

где

 — числа Бернулли,
 — числа Эйлера.

Значения тригонометрических функций для некоторых углов

[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности
Радианы
Градусы

Значения тригонометрических функций нестандартных углов

[править | править код]
Радианы
Градусы
Радианы
Градусы

Свойства тригонометрических функций

[править | править код]

Простейшие тождества

[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то согласно уравнению единичной окружности () или теореме Пифагора имеем для любого :

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

Из определения тангенса и котангенса следует, что

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для :

sin cos tg ctg sec cosec