Cramers regel är en sats inom linjär algebra, vilken ger lösningen till ett linjärt ekvationssystem med hjälp av determinanter. Satsen är namngiven efter Gabriel Cramer (1704–1752).
Beräkningsmässigt är metoden ineffektiv då flera ekvationsevalueringar är nödvändiga. Den är därför sällan använd inom praktiska tillämpningar. Men satsen har ett teoretiskt värde då metoden ger ett explicit uttryck för lösningar till ekvationssystem.
Ett ekvationssystem representeras i matrisnotation som
där är en inverterbar kvadratisk matris och vektorn är en kolonnvektor.
Enligt Cramers sats är
där är matrisen med i:te kolumnen i utbytt mot kolumnvektorn och den i:te komponenten i lösningsvektorn.
Cramers metod är lämplig för att lösa ekvationssystem med två obekanta
vilket motsvarar matrisnotationen
Lösningarna är enligt Cramers regel
För ett bevis av Cramers regel kan två egenskaper hos determinanter utnyttjas:
- Addition av en kolumn till en annan kolumn ändrar inte determinantens värde
- Multiplikation av en kolumn i en matris A med ett reellt tal c ändrar det(A) till c det(A)
Antag att vi har n linjära ekvationer av de n variablerna :
Enligt Cramers regel är
Om substitueras med det ursprungliga systemets vänsterled, är kvoten ekvivalent med
Genom att från den första kolumnen subtrahera den andra kolumnen multiplicerad med , den tredje multiplicerad med och så vidare, visar sig kvoten vara lika med
Enligt determinantegenskap (2) kan faktorn i täljarens första kolumn brytas ut. Därmed har vi
- .
Om på motsvarande sätt, kolumn nummer k från det ursprungliga ekvationssystemets motsvarande matris ersätts med kolumn b, är resultatet kvoten , eller