Теорема відліків Віттекера — Найквіста — Котельникова — Шеннона — Вікіпедія
Теоре́ма ві́дліків Вітте́кера — На́йквіста — Коте́льникова — Ше́ннона (теорема відліків) свідчить, що якщо неперервний сигнал x(t) має спектр, обмежений частотою Fmax, то його можна однозначно і без втрат відновити за дискретними відліками, узятими з частотою fдискр=2*Fmax, або, по-іншому, за відліками, взятими з періодом Tдискр=.
Теорему відліків можна сформулювати обернено:
- Для того, щоб відновити сигнал за його відліками без втрат, необхідно, щоб частота дискретизації була хоча б удвічі більшою за максимальну частоту первинного неперервного сигналу. Fд ≥ 2Fmax.
Теорема відліків розглядає ідеальний випадок, коли сигнал почався нескінченно давно й ніколи не закінчиться, а також не має в часовій характеристиці точок розриву. Саме це означає поняття «спектр, обмежений частотою Fmax».
Реальні сигнали скінченні в часі і, звичайно, мають у часовій характеристиці розриви, відповідно їхній спектр нескінченний. У такому випадку повне відновлення сигналу неможливе і з теореми відліків випливають 2 наслідки:
- Будь-який аналоговий сигнал можна відновити з якою завгодно точністю за його дискретними відліками, взятими з частотою , де — максимальна частота, якою обмежений спектр реального сигналу.
- Якщо максимальна частота в сигналі перевищує половину частоти дискретизації, то способу відновити сигнал з дискретного в аналоговий без спотворення не існує.
Теорему сформулював Гаррі Найквіст 1928 року в праці «Certain topics in telegraph transmission theory». 1933 року подібні дані опублікував В. О. Котельников у праці «Про пропускну здатність ефіру і дроту в електрозв'язку». Теорема є однією з основоположних тверджень у теорії й техніці цифрового зв'язку.
- H. Nyquist, "Certain topics in telegraph transmission theory, " Trans. AIEE, vol. 47, pp. 617—644, Apr. 1928.
- Котельников В. А. О пропускной способности эфира и проволоки в электросвязи — Всесоюзный энергетический комитет.//Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности, 1933.
- C. E. Shannon, "Communication in the presence of noise, " Proc. Institute of Radio Engineers, vol. 37, no.1, pp. 10—21, Jan. 1949.
- [[https://web.archive.org/web/20141018233156/http://webdemo.inue.uni-stuttgart.de/webdemos/02_lectures/uebertragungstechnik_1/sampling_theorem/ Архівовано 18 жовтня 2014 у Wayback Machine.] Sampling of analog signals] Інтерактивна презентація дискретизації. Institute of Telecommunications, University of Stuttgart
В іншому мовному розділі є повніша стаття Nyquist–Shannon sampling theorem(англ.). Ви можете допомогти, розширивши поточну статтю за допомогою перекладу з англійської.
|
Це незавершена стаття з інформатики. Ви можете допомогти проєкту, виправивши або дописавши її. |