总变差 - 维基百科,自由的百科全书
在数学中,总变差(英語:Total variation)就是一函数其数值变化的差的总和。
定义
[编辑]矢量空间
[编辑]实值函数定义在区间的总变差是一维参数曲线的弧长。 连续可微函数的总变差,可由如下的积分给出
任意实值或虚值函数定义在区间上的总变差,由
定义。其中为区间中的所有分划.
其中 是Ω中的紧支集上全体连续可微向量函数构成的集合, 是本质上确界范数。
若可微,上式可简化为
度量空间
[编辑]在一个度量空间上,集函数,其总变差为:
可微定义的证明
[编辑]首先需要利用高斯散度定理证明一个等式.
引理
[编辑]在假设条件下,下面的等式成立:
引理证明
[编辑]由高斯散度定理. 将代入,可得
由于在的边界上,从而
注意到代入上式,移项即得
- .
参阅
[编辑]外部链接
[编辑]理论
[编辑]单变量
- Boris I. Golubov (and comments of Anatolii Georgievich Vitushkin) "Variation of a function (页面存档备份,存于互联网档案馆)", Springer-Verlag Online Encyclopaedia of Mathematics.
- "Total variation" on Planetmath.
多变量
- Comments of Anatolii Georgievich Vitushkin on the preceding article of Boris I. Golubov "Variation of a function (页面存档备份,存于互联网档案馆)", Springer-Verlag Online Encyclopaedia of Mathematics.
- Boris I. Golubov "Arzelà variation (页面存档备份,存于互联网档案馆)", "Fréchet variation (页面存档备份,存于互联网档案馆)", "Hardy variation (页面存档备份,存于互联网档案馆)", "Pierpont variation (页面存档备份,存于互联网档案馆)", "Tonelli plane variation (页面存档备份,存于互联网档案馆)", "Vitali variation (页面存档备份,存于互联网档案馆)", voices from the Springer-Verlag Online Encyclopaedia of Mathematics.
测度论
- Rowland, Todd. "Total Variation (页面存档备份,存于互联网档案馆)". From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein.
- "Jordan decomposition (页面存档备份,存于互联网档案馆)" on Planetmath.
概率论
- M. Denuit and S. Van Bellegem "On the stop-loss and total variation distances between random sums", discussion paper 0034 of the Statistic Institute of the "Université Catholique de Louvain".
应用
[编辑]- Caselles, Vicent; Chambolle; Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, SIAM, Multiscale Modeling and Simulation, vol. 6 n. 3, 2007 外部链接存在于
|title=
(帮助) (a work dealing with total variation application in denoising problems for image processing).
- Tony F. Chan and Jackie (Jianhong) Shen (2005), Image Processing and Analysis - Variational, PDE, Wavelet, and Stochastic Methods, SIAM, ISBN 089871589X (with in-depth coverage and extensive applications of Total Variations in modern image processing, as started by Rudin, Osher, and Fatemi).