圖乘積 - 维基百科,自由的百科全书

圖論中,圖乘積為一個在圖上的二元運算,精確地說,這是一個需要兩個圖G1和G2,並產生出圖H 有著以下性質

  • 圖H的頂點集合 是 笛卡爾乘積 V(G1) × V(G2),其中 V(G1)和 V(G2)分別是圖 G1G2的頂點集合。
  • H的兩個頂點(u1u2)和(v1v2) 是由一條所連接頂點 u1, u2, v1, v2滿足一個條件需要將圖 G1G2的邊列入考慮。

關於用詞以及符號對於特定的圖乘積有非常多,讀者應當注意去確認作者使用的定義

圖表

[编辑]

以下的表格顯示了常見的圖乘積,並用記作兩頂點有被一條邊連接,用記作兩頂點有未被一條邊連接

各種乘積 的情況 頂點數與邊數

範例
笛卡爾乘積(圖論)英语Cartesian product of graphs

 =  and    )

或是

   and  =  )

張量積(圖論)英语Tensor product of graphs

   and    
強乘積(AND乘積)

u1 = v1 and u2 ∼ v2 )

或是 ( u1 ∼ v1 and u2 = v2 )

或是 ( u1 ∼ v1 and u2 ∼ v2 )

弱乘積(OR乘積)

或是

根乘積

其他概念

[编辑]

參考

[编辑]