汉明权重 - 维基百科,自由的百科全书
汉明权重是一串符号中非零符号的个数。因此它等同于同样长度的全零符号串的汉明距离。在最为常见的数据位符号串中,它是1的个数。
字符 | 字符串 | 汉明权重 |
0,1 | 11101 | 4 |
0,1 | 11101000 | 4 |
0,1 | 00000000 | 0 |
' ',a-z | hello world | 11 |
历史及应用
[编辑]汉明权重是以理查德·衛斯里·漢明的名字命名的,它在包括信息论、编码理论、密码学等多个领域都有应用。
高效实现
[编辑]在密码学以及其它应用中经常需要计算数据位中1的个数,针对如何高效地实现人们已经广泛地进行了研究。一些处理器使用单个的命令进行计算,另外一些根据数据位向量使用并行运算进行处理。对于没有这些特性的处理器来说,已知的最好解决办法是按照树状进行相加。例如,要计算二进制数A=0110110010111010中1的个数,这些运算可以表示为:
符号 | 二进制 | 十进制 | 注释 |
A | 01 10 11 00 10 11 10 10 | 原始数据 | |
B = A & 01 01 01 01 01 01 01 01 | 01 00 01 00 00 01 00 00 | 1,0,1,0,0,1,0,0 | A隔一位检验 |
C = (A >> 1) & 01 01 01 01 01 01 01 01 | 00 01 01 00 01 01 01 01 | 0,1,1,0,1,1,1,1 | A中剩余的数据位 |
D = B + C | 01 01 10 00 01 10 01 01 | 1,1,2,0,1,2,1,1 | A中每个双位段中1的个数列表 |
E = D & 0011 0011 0011 0011 | 00 01 00 00 00 10 00 01 | 1,0,2,1 | D中数据隔一位检验 |
F = (D >> 2) & 0011 0011 0011 0011 | 00 01 00 10 00 01 00 01 | 1,2,1,1 | D中剩余数据的计算 |
G = E + F | 00 10 00 10 00 11 00 10 | 2,2,3,2 | A中4位数据段中1的个数列表 |
H = G & 00001111 00001111 | 00 00 00 10 00 00 00 10 | 2,2 | G中数据隔一位检验 |
I = (G >> 4) & 00001111 00001111 | 00 00 00 10 00 00 00 11 | 2,3 | G中剩余数据的计算 |
J = H + I | 00 00 01 00 00 00 01 01 | 4,5 | A中8位数据段中1的个数列表 |
K = J & 0000000011111111 | 00 00 00 00 00 00 01 01 | 5 | J中隔一位检验 |
L = (J >> 8) & 0000000011111111 | 00 00 00 00 00 00 01 00 | 4 | J中剩余数据的检验 |
M = K + L | 00 00 00 00 00 00 10 01 | 9 | 最终答案 |
这里的运算是用C语言表示的,所以X >> Y表示X右移Y位,X & Y表示X与Y的位与,+表示普通的加法。基于上面所讨论的思想的这个问题的最好算法列在这里:
//types and constants used in the functions below typedef unsigned __int64 uint64; //assume this gives 64-bits const uint64 m1 = 0x5555555555555555; //binary: 0101... const uint64 m2 = 0x3333333333333333; //binary: 00110011.. const uint64 m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ... const uint64 m8 = 0x00ff00ff00ff00ff; //binary: 8 zeros, 8 ones ... const uint64 m16 = 0x0000ffff0000ffff; //binary: 16 zeros, 16 ones ... const uint64 m32 = 0x00000000ffffffff; //binary: 32 zeros, 32 ones ... const uint64 hff = 0xffffffffffffffff; //binary: all ones const uint64 h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3... //This is a naive implementation, shown for comparison, //and to help in understanding the better functions. //It uses 24 arithmetic operations (shift, add, and). int popcount_1(uint64 x) { x = (x & m1 ) + ((x >> 1) & m1 ); //put count of each 2 bits into those 2 bits x = (x & m2 ) + ((x >> 2) & m2 ); //put count of each 4 bits into those 4 bits x = (x & m4 ) + ((x >> 4) & m4 ); //put count of each 8 bits into those 8 bits x = (x & m8 ) + ((x >> 8) & m8 ); //put count of each 16 bits into those 16 bits x = (x & m16) + ((x >> 16) & m16); //put count of each 32 bits into those 32 bits x = (x & m32) + ((x >> 32) & m32); //put count of each 64 bits into those 64 bits return x; } //This uses fewer arithmetic operations than any other known //implementation on machines with slow multiplication. //It uses 17 arithmetic operations. int popcount_2(uint64 x) { x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits x += x >> 8; //put count of each 16 bits into their lowest 8 bits x += x >> 16; //put count of each 32 bits into their lowest 8 bits x += x >> 32; //put count of each 64 bits into their lowest 8 bits return x &0xff; } //This uses fewer arithmetic operations than any other known //implementation on machines with fast multiplication. //It uses 12 arithmetic operations, one of which is a multiply. int popcount_3(uint64 x) { x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits return (x * h01)>>56; //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ... }
在最坏的情况下,上面的实现是所有已知算法中表现最好的。但是,如果已知大多数数据位是0的话,那么还有更快的算法。这些更快的算法是基于这样一种事实即X与X-1相与得到的最低位永远是0。例如:
Expression | Value |
X | 0 1 0 0 0 1 0 0 0 1 0 0 0 0 |
X-1 | 0 1 0 0 0 1 0 0 0 0 1 1 1 1 |
X & (X-1) | 0 1 0 0 0 1 0 0 0 0 0 0 0 0 |
减1操作将最右边的符号从0变到1,从1变到0,与操作将会移除最右端的1。如果最初X有N个1,那么经过N次这样的迭代运算,X将减到0。下面的算法就是根据这个原理实现的。
//This is better when most bits in x are 0 //It uses 3 arithmetic operations and one comparison/branch per "1" bit in x. int popcount_4(uint64 x) { uint64 count; for (count=0; x; count++) x &= x-1; return count; } //This is better if most bits in x are 0. //It uses 2 arithmetic operations and one comparison/branch per "1" bit in x. //It is the same as the previous function, but with the loop unrolled. #define f(y) if ((x &= x-1) == 0) return y; int popcount_5(uint64 x) { if (x == 0) return 0; f( 1) f( 2) f( 3) f( 4) f( 5) f( 6) f( 7) f( 8) f( 9) f(10) f(11) f(12) f(13) f(14) f(15) f(16) f(17) f(18) f(19) f(20) f(21) f(22) f(23) f(24) f(25) f(26) f(27) f(28) f(29) f(30) f(31) f(32) f(33) f(34) f(35) f(36) f(37) f(38) f(39) f(40) f(41) f(42) f(43) f(44) f(45) f(46) f(47) f(48) f(49) f(50) f(51) f(52) f(53) f(54) f(55) f(56) f(57) f(58) f(59) f(60) f(61) f(62) f(63) return 64; } //Use this instead if most bits in x are 1 instead of 0 #define f(y) if ((x |= x+1) == hff) return 64-y;
参见
[编辑]外部链接
[编辑]- Aggregate Magic Algorithms (页面存档备份,存于互联网档案馆).优化汉明重量算法及其它算法解释(附源代码)。
- HACKMEM item 169 (页面存档备份,存于互联网档案馆). Population count assembly code for the PDP/6-10.
- Bit Twiddling Hacks (页面存档备份,存于互联网档案馆)带有源代码的几种汉明重量计算方法