自同态 - 维基百科,自由的百科全书
在数学中,自同态(英語:endomorphism)是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。
在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。
自同构
[编辑]X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含:
自同态环
[编辑]阿贝尔群A的任何两个自同态都可以相加起来,根据规则(f + g)(a) = f(a) + g(a)。在这个加法下,阿贝尔群的自同态形成了一个环(自同态环)。例如,Zn的自同态的集合是所有整系数n × n矩阵的环。向量空间或模的自同态也形成了一个环,像预加法范畴中的任何对象的自同态一样。非阿贝尔群的自同态生成了一个代数结构,称为拟环。
参见
[编辑]外部链接
[编辑]- 自同态和假象的范畴. Victor Porton. 2005. - 范畴的自同态(尤其是带有偏序态射的范畴)也是一定的范畴的对象。
- Endomorphism. PlanetMath.