貝祖等式 - 维基百科,自由的百科全书

数论中,裴蜀等式(英語:Bézout's identity)或貝祖定理Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整數 ,关于未知数 線性丟番圖方程(称为裴蜀等式):

有整数解时当且仅当 最大公约数 倍数。裴蜀等式有解时必然有无穷多个整数解,每组解 都稱為裴蜀數,可用擴展歐幾里得演算法求得。

例如,12 和 42 的最大公因數是 6,则方程 有解。事实上有 等。

特别来说,方程 有整数解当且仅当整数 互素

裴蜀等式也可以用来给最大公约数定义: 其實就是最小的可以寫成 形式的正整數。这个定义的本质是整环中“理想”的概念。因此对于多项式整环也有相应的裴蜀定理。

历史

[编辑]

历史上首先证明关于整数的裴蜀定理的并不是裴蜀,而是17世纪初的法国数学家克劳德-加斯帕·巴歇·德·梅齐里亚克法语Claude-Gaspard Bachet de Méziriac。他在于1624年发表的著作《有关整数的令人快乐与惬意的问题集》(Problèmes plaisants et délectables qui se font par les nombres)第二版中给出了问题的描述和证明[1]

然而,裴蜀推广了梅齐里亚克的结论,特别是探讨了多项式中的裴蜀等式,并给出了相应的定理和证明[2]

整数中的裴蜀定理

[编辑]

对任意两个整數,设是它们的最大公约数。那么关于未知数線性丟番圖方程(称为裴蜀等式):

有整数解 当且仅当的整數倍。裴蜀等式有解时必然有无穷多个解。

证明

如果 中有一个是0,比如,那么它们两个的最大公约数是。这时裴蜀等式变成,它有整数解当且仅当的倍数,而且有解时必然有无穷多个解,因为可以是任何整数。定理成立。

以下设都不为0。

,下面证明中的最小正元素是的最大公约数。

首先, 不是空集(至少包含),因此由于自然数集合是良序的,中存在最小正元素。考虑中任意一个正元素)对带余除法:设,其中为正整数,。但是

因此 。也就是说,中任意一个正元素都是 的倍数,特别地:。因此 公约数

另一方面,对的任意正公约数,设,那么

因此。所以最大公约数

在方程中,如果 ,那么方程显然有无穷多个解:

相反的,如果有整数解,那么,于是由前可知 (即 )。

时,方程有解当且仅当互质。方程有解时,解的集合是

。其中是方程的一个解,可由辗转相除法得到。

所有解中,恰有二解满足,等號只會在其中一個是另一個的倍數時成立。輾轉相除法給出的解會是這兩解中的一個。

例子

[编辑]

丟番圖方程 没有整数解,因为504和651的最大公约数是21。而方程是有解的。为了求出通解,可以先约掉公约数21,这样得到方程:

通过扩展欧几里得算法可以得到一组特解

特解的求法
為滿足的解

代回,解一元一次方程式得
代回,得
代回,得
為一組特解

于是通解为:,即

多个整数间的裴蜀定理

[编辑]

个整数,是它们的最大公约数,那么存在整数 使得 。特别来说,如果互质(不是两两互质),那么存在整数 使得

多项式环裡的貝祖定理

[编辑]

时,对于多项式环裡的多项式,裴蜀定理也成立。设有一族裡的多项式。设为它们的最大公约式(首项系数为1且次数最高者),那么存在多项式使得。特别来说,如果互质(不是两两互质),那么存在多项式使得

对于两个多项式的情况,与整数时一样可以得到通解。

任意主理想环上的情况

[编辑]

裴蜀可以推广到任意的主理想环上。设环是主理想环,为环中元素,是它们的一个最大公约元,那么存在环中元素使得:

这是因为在主理想环中,的最大公约元被定义为理想生成元

参见

[编辑]

参考来源

[编辑]
  1. ^ 原版的网上版本(法文). [2008-08-26]. (原始内容存档于2014-09-08). 
  2. ^ 证明的网上版本(法文). [2008-08-26]. (原始内容存档于2019-12-01). 
  • 闵嗣鹤、严士健,初等数论,高等教育出版社,2003。
  • 唐忠明,抽象代数基础,高等教育出版社,2006。

外部連結

[编辑]