In der Zahlentheorie wird eine Primzahl elitär genannt, wenn nur endlich viele Fermat-Zahlen quadratische Reste modulo sind.
Ihren Namen verdanken sie dem österreichischen Mathematiker Alexander Aigner, der sie 1986 beschrieb und als erster untersuchte.[1] Aigner nannte diese Primzahlen elitär, da sie nur sehr selten auftauchen; er selbst fand lediglich 14 solche Primzahlen, die kleiner als 35.000.000 sind.
Da Fermat-Zahlen die Beziehung erfüllen, wird die Kongruenzfolge ( mod ) ab einem bestimmten Index periodisch, d. h., es existiert eine minimale natürliche Zahl derart, dass (mod ) für alle natürlichen Zahlen gilt. Die Terme werden als Fermat-Reste von bezeichnet. Demnach ist eine Primzahl genau dann elitär, wenn alle Fermat-Reste quadratische Nichtreste modulo sind.
Die ersten elitären Primzahlen sind: 3, 5, 7, 41, 15.361, 23.041, 26.881, 61.441, 87.041, 163.841, … (Folge A102742 in OEIS)
Es ist unbekannt, ob es unendlich viele elitäre Primzahlen gibt. Es konnte jedoch nachgewiesen werden, dass die Anzahl aller elitärer Primzahlen die Abschätzung
erfüllt.[2]
- ↑ A. Aigner: Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. In: Monatshefte Mathematik. 101, 1986, S. 85–93.
- ↑ Krizek et al.: On the convergence of series of reciprocals of prims related to the Fermat numbers. In: Journal of Number Theory. 97, 2002, S. 95–112.
- Alain Chaumont, Tom Müller: All Elite Primes Up to 250 Billion. In: Journal of Integer Sequences. Band 9, Nr. 06.3.8, 2006 (cs.uwaterloo.ca [PDF]).
formelbasiert | Carol ((2n − 1)2 − 2) | Doppelte Mersenne (22p − 1 − 1) | Fakultät (n! ± 1) | Fermat (22n + 1) | Kubisch (x3 − y3)/(x − y) | Kynea ((2n + 1)2 − 2) | Leyland (xy + yx) | Mersenne (2p − 1) | Mills (A3n) | Pierpont (2u⋅3v + 1) | Primorial (pn# ± 1) | Proth (k⋅2n + 1) | Pythagoreisch (4n + 1) | Quartisch (x4 + y4) | Thabit (3⋅2n − 1) | Wagstaff ((2p + 1)/3) | Williams ((b-1)⋅bn − 1) | Woodall (n⋅2n − 1) |
Primzahlfolgen | Bell | Fibonacci | Lucas | Motzkin | Pell | Perrin |
eigenschaftsbasiert | Elitär | Fortunate | Gut | Glücklich | Higgs | Hochkototient | Isoliert | Pillai | Ramanujan | Regulär | Stark | Stern | Wall–Sun–Sun | Wieferich | Wilson |
basisabhängig | Belphegor | Champernowne | Dihedral | Einzigartig | Fröhlich | Keith | Lange | Minimal | Mirp | Permutierbar | Primeval | Palindrom | Repunit-Primzahl ((10n − 1)/9) | Schwach | Smarandache–Wellin | Strobogrammatisch | Tetradisch | Trunkierbar | Zirkular |
basierend auf Tupel | Ausbalanciert (p − n, p, p + n) | Chen | Cousin (p, p + 4) | Cunningham (p, 2p ± 1, …) | Drilling (p, p + 2 oder p + 4, p + 6) | Konstellation | Sexy (p, p + 6) | Sichere (p, (p − 1)/2) | Sophie Germain (p, 2p + 1) | Vierling (p, p + 2, p + 6, p + 8) | Zwilling (p, p + 2) | Zwillings-Bi-Kette (n ± 1, 2n ± 1, …) |
nach Größe | Titanisch (1.000+ Stellen) | Gigantisch (10.000+ Stellen) | Mega (1.000.000+ Stellen) | Beva (1.000.000.000+ Stellen) |