有单位的 - 维基百科,自由的百科全书
此條目需要擴充。 (2015年4月18日) |
此條目没有列出任何参考或来源。 (2015年4月18日) |
在數學裡,一代數結構是有单位的(unital 或 unitary),當它含有一乘法单位元素,即含有一元素 1,對所有此代數結構內的元素 x ,有 1x=x1=x 的性質。
上述說法和一代數結構為乘法上的幺半群的說法是等價的。和所有的么半群一樣,其乘法單位元也是唯一的。
大部份在抽象代數內被考慮的結合代數,如群代數、多項式代數和矩陣代數等都是有单位的,當環被假設必須如此時。大部份在數學分析內被考慮之函數的代數都没有单位,例如平方可積函數(於無界定義域內)的代數和於無限會降至零之函數的代數,尤其是在某些(非緊)集合上具有支集的函數。
給定兩個單作代數A和B,一代數同態
- f : A → B
為有单位的當其映射 A 的單位元映为 B 的單位元。
若数域 K 上的結合代數 A 没有单位,可如下加入一單位元:A×K為K-向量空間且如下定義乘法 * ,
- (x,r) * (y,s) = (xy + sx + ry, rs)
其中 x 和 y 為 A 的元素及 r 和 s 為 K 的元素。然後,* 將為有單位元 (0,1) 的結合運算。舊代數 A 包含於新代數內,且 A×K 成爲是包含 A 的最一般的有單位代數,在泛性質的意思之下。
根據環理論術語,一般假定乘法單位元存在於任一環內。依此假定,所有的環都會有單位,且所有的環同態也會是有單位,且(結合)代數有單位若且唯若其為環。作者若不把環當做都有乘法單位元,會把有乘法單位元的環稱做有單位環(幺环),且把環單位元如單位元般作用在其上的模稱做有单位模(幺模)。